login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284205
Ninth column of Euler's difference table in A068106.
1
0, 0, 0, 0, 0, 0, 0, 40320, 322560, 2943360, 30078720, 339696000, 4196666880, 56255149440, 812752093440, 12585067447680, 207863095910400, 3646938237505920, 67723519234210560, 1326863186062565760, 27349945952061841920, 591598086412112035200
OFFSET
1,8
COMMENTS
For n >= 9, this is the number of permutations of [n] that avoid substrings j(j+8), 1 <= j <= n-8.
LINKS
Enrique Navarrete, Generalized K-Shift Forbidden Substrings in Permutations, arXiv:1610.06217 [math.CO], 2016.
FORMULA
For n>=9: a(n) = Sum_{j=0..n-8} (-1)^j*binomial(n-8,j)*(n-j)!.
Note a(n)/n! ~ 1/e.
EXAMPLE
a(12)=339696000 since this is the number of permutations in S12 that avoid substrings {19,2(10),3(11),4(12)}.
MATHEMATICA
With[{k = 9}, ConstantArray[0, k - 2]~Join~Table[Sum[(-1)^j*Binomial[n - (k - 1), j] (n - j)!, {j, 0, n - (k - 1)}], {n, k - 1, k + 12}]] (* Michael De Vlieger, Mar 26 2017 *)
CROSSREFS
Also 40320 times A176734.
Cf. A068106.
Sequence in context: A250055 A321844 A226887 * A239035 A179734 A061123
KEYWORD
nonn
AUTHOR
Enrique Navarrete, Mar 22 2017
STATUS
approved