login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284206
Tenth column of Euler's difference table in A068106.
1
0, 0, 0, 0, 0, 0, 0, 0, 362880, 3265920, 33022080, 369774720, 4536362880, 60451816320, 869007242880, 13397819541120, 220448163358080, 3854801333416320, 71370457471716480, 1394586705296776320, 28676809138124407680, 618948032364173877120
OFFSET
1,9
COMMENTS
For n >= 10, this is the number of permutations of [n] that avoid substrings j(j+9), 1 <= j <= n-9.
LINKS
Enrique Navarrete, Generalized K-Shift Forbidden Substrings in Permutations, arXiv:1610.06217 [math.CO], 2016.
FORMULA
For n>=10: a(n) = Sum_{j=0..n-9} (-1)^j*binomial(n-9,j)*(n-j)!.
Note a(n)/n! ~ 1/e.
EXAMPLE
a(13)=4536362880 since this is the number of permutations in S13 that avoid substrings {1(10),2(11),3(12),4(13)}.
MATHEMATICA
Table[Sum[(-1)^j*Binomial[n - 9, j]*(n - j)!, {j, 0, n - 9}], {n, 22}] (* Michael De Vlieger, Apr 03 2017 *)
CROSSREFS
Also 362880 times A176735.
Cf. A068106.
Sequence in context: A011520 A321845 A226888 * A179736 A045511 A029577
KEYWORD
nonn
AUTHOR
Enrique Navarrete, Mar 22 2017
STATUS
approved