login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Euler's difference table: triangle read by rows, formed by starting with factorial numbers (A000142) and repeatedly taking differences. T(n,n) = n!, T(n,k) = T(n,k+1) - T(n-1,k).
23

%I #67 Aug 13 2022 15:49:28

%S 1,0,1,1,1,2,2,3,4,6,9,11,14,18,24,44,53,64,78,96,120,265,309,362,426,

%T 504,600,720,1854,2119,2428,2790,3216,3720,4320,5040,14833,16687,

%U 18806,21234,24024,27240,30960,35280,40320,133496,148329,165016,183822,205056,229080,256320,287280,322560,362880

%N Euler's difference table: triangle read by rows, formed by starting with factorial numbers (A000142) and repeatedly taking differences. T(n,n) = n!, T(n,k) = T(n,k+1) - T(n-1,k).

%C Triangle T(n,k) (n >= 1, 1 <= k <= n) giving number of ways of winning with (n-k+1)st card in the generalized "Game of Thirteen" with n cards.

%C From _Emeric Deutsch_, Apr 21 2009: (Start)

%C T(n-1,k-1) is the number of non-derangements of {1,2,...,n} having largest fixed point equal to k. Example: T(3,1)=3 because we have 1243, 4213, and 3241.

%C Mirror image of A047920.

%C (End)

%H Reinhard Zumkeller, <a href="/A068106/b068106.txt">Rows n = 0..150 of triangle, flattened</a>

%H W. Y. C. Chen et al., <a href="http://dx.doi.org/10.1016/j.disc.2011.06.006">Higher-order log-concavity in Euler's difference table</a>, Discrete Math., 311 (2011), 2128-2134.

%H P. R. de Montmort, <a href="http://dx.doi.org/10.1007/978-1-4757-3500-0_4">On the Game of Thirteen (1713)</a>, reprinted in Annotated Readings in the History of Statistics, ed. H. A. David and A. W. F. Edwards, Springer-Verlag, 2001, pp. 25-29.

%H Emeric Deutsch and S. Elizalde, <a href="http://arxiv.org/abs/0904.2792">The largest and the smallest fixed points of permutations</a>, arXiv:0904.2792 [math.CO], 2009.

%H D. Dumont, <a href="http://www.mat.univie.ac.at/~slc/opapers/s05dumont.html">Matrices d'Euler-Seidel</a>, Sem. Loth. Comb. B05c (1981) 59-78.

%H Philip Feinsilver and John McSorley, <a href="https://arxiv.org/abs/1710.00788">Zeons, Permanents, the Johnson scheme, and Generalized Derangements</a>, arXiv:1710.00788 [math.CO], (2017); see page 29.

%H P. Feinsilver and J. McSorley, <a href="https://doi.org/10.1155/2011/539030">Zeons, Permanents, the Johnson scheme, and Generalized Derangements</a>, International Journal of Combinatorics, 2011 (2011).

%H Fanja Rakotondrajao, <a href="http://www.emis.de/journals/INTEGERS/papers/h36/h36.Abstract.html">k-Fixed-Points-Permutations</a>, Integers: Electronic journal of combinatorial number theory 7 (2007) A36.

%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>

%F T(n, k) = Sum_{j>= 0} (-1)^j*binomial(n-k, j)*(n-j)!. - _Philippe Deléham_, May 29 2005

%F From _Emeric Deutsch_, Jul 18 2009: (Start)

%F T(n,k) = Sum_{j=0..k} d(n-j)*binomial(k, j), where d(i) = A000166(i) are the derangement numbers.

%F Sum_{k=0..n} (k+1)*T(n,k) = A000166(n+2) (the derangement numbers). (End)

%F T(n, k) = n!*hypergeom([k-n], [-n], -1). - _Peter Luschny_, Oct 05 2017

%F D-finite recurrence for columns: T(n,k) = n*T(n-1,k) + (n-k)*T(n-2,k). - _Georg Fischer_, Aug 13 2022

%e Triangle begins:

%e [0] 1;

%e [1] 0, 1;

%e [2] 1, 1, 2;

%e [3] 2, 3, 4, 6;

%e [4] 9, 11, 14, 18, 24;

%e [5] 44, 53, 64, 78, 96, 120;

%e [6] 265, 309, 362, 426, 504, 600, 720;

%e [7] 1854, 2119, 2428, 2790, 3216, 3720, 4320, 5040.

%p d[0] := 1: for n to 15 do d[n] := n*d[n-1]+(-1)^n end do: T := proc (n, k) if k <= n then sum(binomial(k, j)*d[n-j], j = 0 .. k) else 0 end if end proc: for n from 0 to 9 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form; _Emeric Deutsch_, Jul 18 2009

%t t[n_, k_] := Sum[(-1)^j*Binomial[n-k, j]*(n-j)!, {j, 0, n}]; Flatten[ Table[ t[n, k], {n, 0, 9}, {k, 0, n}]] (* _Jean-François Alcover_, Feb 21 2012, after _Philippe Deléham_ *)

%t T[n_, k_] := n! HypergeometricPFQ[{k-n}, {-n}, -1];

%t Table[T[n, k], {n,0,9}, {k,0,n}] // Flatten (* _Peter Luschny_, Oct 05 2017 *)

%o (Haskell)

%o a068106 n k = a068106_tabl !! n !! k

%o a068106_row n = a068106_tabl !! n

%o a068106_tabl = map reverse a047920_tabl

%o -- _Reinhard Zumkeller_, Mar 05 2012

%Y Row sums give A002467.

%Y Diagonals give A000142, A001563, A001564, A001565, A001688, A001689, A023043, A023044, A023045, A023046, A023047 (factorials and k-th differences, k=1..10).

%Y See A047920 and A086764 for other versions.

%Y T(2*n, n) is A033815.

%Y Columns k=0..10 give A000166, A000255, A055790, A277609, A277563, A280425, A280920, A284204, A284205, A284206, A284207.

%K nonn,easy,tabl,nice

%O 0,6

%A _N. J. A. Sloane_, Apr 12 2002

%E More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 01 2003

%E Edited by _N. J. A. Sloane_, Sep 24 2011