login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296997
Number of ways to place 3 points on an n X n point grid so that no point is equally distant from two other points on the same row or the same column.
3
0, 4, 78, 544, 2260, 7068, 18298, 41472, 85032, 161300, 287430, 486624, 789308, 1234604, 1871730, 2761728, 3979088, 5613732, 7772862, 10583200, 14193060, 18774844, 24527338, 31678464, 40487800, 51249588, 64295478, 79997792, 98772492, 121082700, 147441890, 178417664
OFFSET
1,2
COMMENTS
Rotations and reflections of a placement are counted. If they are to be ignored, see A296996.
The condition of placements is also known as "no 3-term arithmetic progressions".
LINKS
FORMULA
a(n) = (n^6 - 3*n^4 - 3*n^3 + 8*n^2)/6 - (n == 1 (mod 2))*n/2.
a(n) = (n^6 - 3*n^4 - 3*n^3 + 8*n^2)/6 for n even,
a(n) = (n^6 - 3*n^4 - 3*n^3 + 8*n^2 - 3*n)/6 for n odd.
From Colin Barker, Dec 23 2017: (Start)
G.f.: 2*x^2*(2 + 29*x + 93*x^2 + 82*x^3 + 32*x^4 + x^5 + x^6) / ((1 - x)^7*(1 + x)^2).
a(n) = 5*a(n-1) - 8*a(n-2) + 14*a(n-4) - 14*a(n-5) + 8*a(n-7) - 5*a(n-8) + a(n-9) for n>9.
(End)
MATHEMATICA
Array[(#^6 - 3 #^4 - 3 #^3 + 8 #^2)/6 - # Boole[OddQ@ #]/2 &, 32] (* Michael De Vlieger, Dec 23 2017 *)
CoefficientList[ Series[-2x (2 + 29x + 93x^2 + 82x^3 + 32x^4 + x^5 + x^6)/((x - 1)^7 (x + 1)^2), {x, 0, 31}], x] (* or *)
LinearRecurrence[{5, -8, 0, 14, -14, 0, 8, -5, 1}, {0, 4, 78, 544, 2260, 7068, 18298, 41472, 85032}, 32] (* Robert G. Wilson v, Jan 15 2018 *)
PROG
(PARI) concat(0, Vec(2*x^2*(2 + 29*x + 93*x^2 + 82*x^3 + 32*x^4 + x^5 + x^6) / ((1 - x)^7*(1 + x)^2) + O(x^40))) \\ Colin Barker, Dec 23 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, Dec 23 2017
STATUS
approved