login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296998
Number of ways to place 4 points on an n X n point grid so that no point is equally distant from two other points on the same row or the same column.
3
0, 1, 90, 1620, 11810, 56613, 206234, 623904, 1641654, 3882985, 8431280, 17078364, 32641102, 59401153, 103638420, 174341920, 284041304, 449881893, 694849380, 1049316180, 1552766796, 2255936441, 3223157762, 4535226864, 6292505300, 8618661337, 11664674406, 15613614884
OFFSET
1,3
COMMENTS
Rotations and reflections of a placement are counted.
The condition of placements is also known as "no 3-term arithmetic progressions".
LINKS
Index entries for linear recurrences with constant coefficients, signature (3,-1,-3,1,-3,8,0,-2,-2,-10,10,2,2,0,-8,3,-1,3,1,-3,1).
FORMULA
a(n) = binomial(n^2, 4) - (floor((n-1)^2/4)*(n^2-3) - ((5/12)*n^2 - (3/2)*n + 1/3 + (n == 0 mod 3)*(-1/3) + (n == 1 mod 2)*3/4 + (n == 2 mod 4)))*2*n.
a(n) = (n^8 -6*n^6 -12*n^5 +35*n^4 +56*n^3 -150*n^2)/24 + b(n), where
b(n) = 0 for n == 0 mod 12,
b(n) = -n^3/2 +11*n/3 for n == 1, 5, 7, 11 mod 12,
b(n) = 8*n/3 for n == 2, 10 mod 12,
b(n) = -n^3/2 +3*n for n == 3, 9 mod 12,
b(n) = 2*n/3 for n == 4, 8 mod 12,
b(n) = 2*n for n == 6 mod 12.
Conjectures from Colin Barker, Dec 23 2017: (Start)
G.f.: x^2*(1 + 87*x + 1351*x^2 + 7043*x^3 + 23072*x^4 + 52978*x^5 + 95887*x^6 + 138345*x^7 + 166488*x^8 + 164998*x^9 + 137795*x^10 + 94181*x^11 + 52940*x^12 + 23010*x^13 + 7601*x^14 + 1647*x^15 + 251*x^16 + 15*x^17 - 10*x^18) / ((1 - x)^9*(1 + x)^4*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + a(n-4) - 3*a(n-5) + 8*a(n-6) - 2*a(n-8) - 2*a(n-9) - 10*a(n-10) + 10*a(n-11) + 2*a(n-12) + 2*a(n-13) - 8*a(n-15) + 3*a(n-16) - a(n-17) + 3*a(n-18) + a(n-19) - 3*a(n-20) + a(n-21) for n>21.
(End)
MATHEMATICA
Array[Binomial[#^2, 4] - 2 # (Floor[(# - 1)^2/4] (#^2 - 3) - (5 #^2/12 - 3 #/2 + 1/3 - Boole[Divisible[#, 3]]/3 + 3 Boole[OddQ@ #]/4 + Boole[Mod[#, 4] == 2])) &, 28] (* Michael De Vlieger, Dec 23 2017 *)
CROSSREFS
Sequence in context: A166817 A166799 A001561 * A060094 A201062 A240259
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, Dec 23 2017
STATUS
approved