login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076531
Numbers n such that sopf(phi(n)) = phi(sopf(n)), where sopf(x) = sum of the distinct prime factors of x.
8
3, 203, 322, 377, 644, 851, 931, 1166, 1211, 1288, 1421, 1666, 1815, 1862, 2332, 2576, 3332, 3724, 4664, 4830, 5152, 6401, 6517, 6664, 7042, 7241, 7448, 9075, 9328, 9555, 9660, 9845, 9922, 9947, 10304, 10465, 11662, 11814, 11830, 12558, 12903, 13034
OFFSET
1,1
LINKS
EXAMPLE
sopf(phi(203)) = sopf(168) = 12; phi(sopf(203)) = phi(36) = 12 hence 203 is a term of the sequence.
MATHEMATICA
p[n_] := Apply[Plus, Transpose[FactorInteger[n]][[1]]]; Select[Range[3, 10^4], p[EulerPhi[ # ]] == EulerPhi[ p[ # ]] &]
PROG
(PARI) sopf(n) = my(f=factor(n)); sum(j=1, #f~, f[j, 1]); \\ A008472
isok(n) = eulerphi(sopf(n)) == sopf(eulerphi(n)); \\ Michel Marcus, Oct 04 2019
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Oct 18 2002
EXTENSIONS
Edited and extended by Ray Chandler, Feb 13 2005
STATUS
approved