login
G.f. satisfies: A(x) = (1+x^2)*(1 + x*A(x)^3).
1

%I #11 Aug 19 2013 18:02:44

%S 1,1,4,16,76,399,2206,12664,74790,451420,2772313,17267652,108821293,

%T 692609446,4445642625,28744599748,187047449289,1224027357216,

%U 8050074481917,53179900898596,352726704965748,2348036826102013,15682048658695168,105052549830928908,705678173069959645

%N G.f. satisfies: A(x) = (1+x^2)*(1 + x*A(x)^3).

%C More generally, for fixed parameters p and q, if F(x) satisfies:

%C F(x) = exp( Sum_{n>=1} x^n * F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^k * F(x)^(k*q)] ),

%C then F(x) = (1 + x*F(x)^(p+1))*(1 + x^2*F(x)^(p+q+1)); here p=2, q=-3.

%F G.f. A(x) satisfies:

%F (1) A(x) = exp( Sum_{n>=1} x^n * A(x)^(2*n)/n * [Sum_{k=0..n} C(n,k)^2 * x^k / A(x)^(3*k)] ).

%F (2) A(x) = exp( Sum_{n>=1} x^n * A(x)^(2*n)/n * [(1 - x/A(x)^3)^(2*n+1) * Sum_{k>=0} C(n+k,k)^2*x^k / A(x)^(3*k) )].

%F Recurrence: 2*(n-4)*(n-2)*n*(2*n+1)*a(n) = 3*(n-4)*(n-2)*(3*n-2)*(3*n-1)*a(n-1) - 2*(n-4)*(n-2)*n*(2*n-1)*a(n-2) + 6*(n-4)*(3*n-8)*(6*n^2 - 17*n + 2)*a(n-3) + 6*(3*n-14)*(9*n^3 - 66*n^2 + 114*n - 4)*a(n-5) + 6*n*(3*n-20)*(6*n^2 - 47*n + 78)*a(n-7) + 3*(n-2)*n*(3*n-26)*(3*n-19)*a(n-9). - _Vaclav Kotesovec_, Aug 19 2013

%F a(n) ~ c*d^n/n^(3/2), where d = 7.1535029565... is the root of the equation -27 - 81*d^2 - 81*d^4 - 27*d^6 + 4*d^7 = 0 and c = 0.26300783791885411389369671... - _Vaclav Kotesovec_, Aug 19 2013

%e G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 76*x^4 + 399*x^5 + 2206*x^6 +...

%e Related expansion:

%e A(x)^3 = 1 + 3*x + 15*x^2 + 73*x^3 + 384*x^4 + 2133*x^5 + 12280*x^6 +...

%e where a(3) = 1 + 15; a(4) = 3 + 73; a(5) = 15 + 384; a(6) = 73 + 2133; ...

%e The logarithm of the g.f. A = A(x) equals the series:

%e log(A(x)) = (1 + x/A^3)*x*A^2 + (1 + 2^2*x/A^3 + x^2/A^6)*x^2*A^4/2 +

%e (1 + 3^2*x/A^3 + 3^2*x^2/A^6 + x^3/A^9)*x^3*A^6/3 +

%e (1 + 4^2*x/A^3 + 6^2*x^2/A^6 + 4^2*x^3/A^9 + x^4/A^12)*x^4*A^8/4 +

%e (1 + 5^2*x/A^3 + 10^2*x^2/A^6 + 10^2*x^3/A^9 + 5^2*x^4/A^12 + x^5/A^15)*x^5*A^10/5 + ...

%e which involves the squares of the binomial coefficients C(n,k).

%t nmax=20;aa=ConstantArray[0,nmax]; aa[[1]]=1;Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1+x^2)*(1+x*AGF^3)-AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}];Flatten[{1,aa}] (* _Vaclav Kotesovec_, Aug 19 2013 *)

%o (PARI) {a(n)=local(p=2,q=-3,A=1+x);for(i=1,n,A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n));polcoeff(A,n)}

%o (PARI) {a(n)=local(p=2,q=-3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0,m,binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}

%o (PARI) {a(n)=local(p=2,q=-3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}

%Y Cf. A200716, A200717, A200718, A200719, A200074, A200075, A199874, A199876, A199877, A198951, A198953, A198957, A192415, A198888, A036765.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Nov 21 2011