login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193112 G.f. satisfies: 1 = Sum_{n>=0} (-x)^(n*(n+1)/2) * A(x)^(2*n+1). 5
1, 1, 3, 13, 63, 328, 1796, 10200, 59529, 354837, 2151079, 13221261, 82200739, 516053099, 3266812048, 20829635112, 133651716406, 862342656359, 5591505085491, 36416212224801, 238114435569354, 1562560513492974, 10287406857203911 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..22.

FORMULA

G.f. A(x) satisfies the continued fraction:

1 = A(x)/(1+ x*A(x)^2/(1- x*(1+x)*A(x)^2/(1+ x^3*A(x)^2/(1+ x^2*(1-x^2)*A(x)^2/(1+ x^5*A(x)^2/(1- x^3*(1+x^3)*A(x)^2/(1+ x^7*A(x)^2/(1+ x^4*(1-x^4)*A(x)^2/(1- ...)))))))))

due to an identity of a partial elliptic theta function.

EXAMPLE

G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 63*x^4 + 328*x^5 + 1796*x^6 +...

which satisfies:

1 = A(x) - x*A(x)^3 - x^3*A(x)^5 + x^6*A(x)^7 + x^10*A(x)^9 - x^15*A(x)^11 - x^21*A(x)^13 ++--...

Related expansions.

A(x)^3 = 1 + 3*x + 12*x^2 + 58*x^3 + 303*x^4 + 1662*x^5 + 9447*x^6 +...

A(x)^5 = 1 + 5*x + 25*x^2 + 135*x^3 + 760*x^4 + 4401*x^5 +...

PROG

(PARI) {a(n)=local(A=[1]); for(i=1, n, A=concat(A, 0); A[#A]=polcoeff(1-sum(m=0, sqrtint(2*(#A))+1, (-x)^(m*(m+1)/2)*Ser(A)^(2*m+1)), #A-1)); if(n<0, 0, A[n+1])}

CROSSREFS

Cf. A193111, A193113, A193114, A193115, A193116.

Sequence in context: A243280 A000259 A007855 * A192729 A284716 A107097

Adjacent sequences:  A193109 A193110 A193111 * A193113 A193114 A193115

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 16 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 22:26 EDT 2019. Contains 322446 sequences. (Running on oeis4.)