login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192729
G.f. satisfies: A(x) = 1/(1 - x*A(x)^2/(1 - x^2*A(x)^2/(1 - x^3*A(x)^2/(1 - x^4*A(x)^2/(1 - ...))))), a recursive continued fraction.
5
1, 1, 3, 13, 63, 329, 1808, 10299, 60271, 360198, 2189111, 13488379, 84066176, 529037390, 3357014851, 21455604032, 137993279809, 892448240335, 5800266701499, 37864046563210, 248158092634265, 1632254493141021, 10771183395497445
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction.
FORMULA
G.f. satisfies: A(x) = P(x)/Q(x) where
_ P(x) = Sum_{n>=0} x^(n*(n+1)) * (-A(x)^2)^n / Product(k=1..n} (1-x^k),
_ Q(x) = Sum_{n>=0} x^(n^2) * (-A(x)^2)^n / Product(k=1..n} (1-x^k),
due to Ramanujan's continued fraction identity.
a(n) ~ c * d^n / n^(3/2), where d = 7.0656326355634513691927118582399... and c = 0.2386935555822482686868972746... - Vaclav Kotesovec, Aug 25 2017
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 63*x^4 + 329*x^5 + 1808*x^6 +...
which satisfies A(x) = P(x)/Q(x) where
P(x) = 1 - x^2*A(x)^2/(1-x) + x^6*A(x)^4/((1-x)*(1-x^2)) - x^12*A(x)^6/((1-x)*(1-x^2)*(1-x^3)) + x^20*A(x)^8/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) -+...
Q(x) = 1 - x*A(x)^2/(1-x) + x^4*A(x)^4/((1-x)*(1-x^2)) - x^9*A(x)^6/((1-x)*(1-x^2)*(1-x^3)) + x^16*A(x)^8/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) -+...
Explicitly, the above series begin:
P(x) = 1 - x^2 - 3*x^3 - 10*x^4 - 42*x^5 - 202*x^6 - 1060*x^7 - 5862*x^8 - 33592*x^9 - 197585*x^10 - 1185867*x^11 - 7233049*x^12 +...
Q(x) = 1 - x - 3*x^2 - 10*x^3 - 41*x^4 - 198*x^5 - 1041*x^6 - 5766*x^7 - 33074*x^8 - 194674*x^9 - 1168988*x^10 - 7132869*x^11 - 44097821*x^12 +...
PROG
(PARI) /* As a recursive continued fraction: */
{a(n)=local(A=1+x, CF); for(i=1, n, CF=1+x; for(k=0, n, CF=1/(1-x^(n-k+1)*A^2*CF+x*O(x^n))); A=CF); polcoeff(A, n)}
(PARI) /* By Ramanujan's continued fraction identity: */
{a(n)=local(A=1+x, P, Q); for(i=1, n,
P=sum(m=0, sqrtint(n), x^(m*(m+1))/prod(k=1, m, 1-x^k)*(-A^2+x*O(x^n))^m);
Q=sum(m=0, sqrtint(n), x^(m^2)/prod(k=1, m, 1-x^k)*(-A^2+x*O(x^n))^m); A=P/Q); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 08 2011
STATUS
approved