The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192727 a(n) = Fibonacci(n-2) + 2*a(n-2) - (n mod 2). 0
 0, 0, 0, 0, 1, 1, 5, 6, 18, 24, 57, 81, 169, 250, 482, 732, 1341, 2073, 3669, 5742, 9922, 15664, 26609, 42273, 70929, 113202, 188226, 301428, 497845, 799273, 1313501, 2112774, 3459042, 5571816, 9096393, 14668209 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS The sequence is Fibonacci-like in the sense that a(n)/a(n-1) converges to the golden ratio as n goes to infinity. LINKS Index entries for linear recurrences with constant coefficients, signature (1,4,-3,-5,2,2). FORMULA a(n) = Fibonacci(n-2) + 2*a(n-2) - n mod 2 for all n >= 2, with a(0) = a(1) = 0. G.f.: -x^4 / ( (x-1)*(1+x)*(2*x^2-1)*(x^2+x-1) ). - R. J. Mathar, Jul 09 2011 a(n) = A000045(n+1) + A000035(n) - A016116(n+1). - R. J. Mathar, Jul 09 2011 EXAMPLE a(10) = is Fibonacci(8) + 2*a(8) - (10 mod 2) = 21 + 36 - 0 = 57. PROG (PARI) a(n) = if (n<=2, 0, fibonacci(n-2) + 2*a(n-2) - n % 2); \\ Michel Marcus, Aug 29 2013 CROSSREFS Sequence in context: A041555 A041747 A180134 * A056519 A295972 A333405 Adjacent sequences:  A192724 A192725 A192726 * A192728 A192729 A192730 KEYWORD nonn,easy AUTHOR Derek Devine, Jul 08 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 1 03:52 EDT 2021. Contains 346384 sequences. (Running on oeis4.)