login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107097
G.f. satisfies: A(A(x)) = A(x)/(1-x), so that the self-COMPOSE transform generates partial sums (A107098).
1
1, 1, 0, 1, -3, 13, -63, 339, -1982, 12429, -82827, 582589, -4303016, 33240205, -267697961, 2241725581, -19477340744, 175259713769, -1630583565434, 15663877511863, -155168272246709, 1583282220672515, -16623104947488348, 179409709469784087, -1988706708427161585
OFFSET
1,5
FORMULA
G.f. satisfies: A(x) = x + A(x)*Series_Reversion(A(x)).
Given g.f. A(x), let G(x) = Series_Reversion(A(x)), then G(x) satisfies:
(1) G(x) = 1 - x/A(x),
(2) G(x) = x - x*G(G(x)),
(3) -G(-x) is the g.f. of A030266, which shifts left under self-COMPOSE.
EXAMPLE
G.f.: A(x) = x + x^2 + x^4 - 3*x^5 + 13*x^6 - 63*x^7 + 339*x^8 -+...
If G(x) = series reversion of g.f. A(x) so that A(G(x)) = x, then G(x) begins:
G(x) = x - x^2 + 2*x^3 - 6*x^4 + 23*x^5 - 104*x^6 + 531*x^7 - 2982*x^8 -+...
Compare the functional inverse, G(x), to the arithmetic inverse x/A(x):
x/A(x) = 1 - x + x^2 - 2*x^3 + 6*x^4 - 23*x^5 + 104*x^6 - 531*x^7 + 2982*x^8 -+...
PROG
(PARI) {a(n)=local(A, B, F); if(n<1, 0, F=x+2*x^2-3*x^3+x*O(x^n); A=F; for(j=0, n, for(i=0, j, B=serreverse(A); A=(A+subst(B, x, A/(1-x)))/2); A=round(A)); polcoeff(A, n, x))}
(PARI) /* A(x) = x + A(x)*Series_Reversion(A(x)): */
{a(n)=local(A=x+x^2); for(i=1, n, A=x+A*serreverse(A+x*O(x^n))); polcoeff(A, n)}
CROSSREFS
Cf. A107098.
Sequence in context: A367061 A192729 A284716 * A202837 A370396 A180111
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 12 2005, Jul 23 2011
EXTENSIONS
Initial zero removed and offset changed to 1 by Paul D. Hanna, Jul 23 2011
STATUS
approved