OFFSET
1,5
FORMULA
G.f. satisfies: A(x) = x + A(x)*Series_Reversion(A(x)).
Given g.f. A(x), let G(x) = Series_Reversion(A(x)), then G(x) satisfies:
(1) G(x) = 1 - x/A(x),
(2) G(x) = x - x*G(G(x)),
(3) -G(-x) is the g.f. of A030266, which shifts left under self-COMPOSE.
EXAMPLE
G.f.: A(x) = x + x^2 + x^4 - 3*x^5 + 13*x^6 - 63*x^7 + 339*x^8 -+...
If G(x) = series reversion of g.f. A(x) so that A(G(x)) = x, then G(x) begins:
G(x) = x - x^2 + 2*x^3 - 6*x^4 + 23*x^5 - 104*x^6 + 531*x^7 - 2982*x^8 -+...
Compare the functional inverse, G(x), to the arithmetic inverse x/A(x):
x/A(x) = 1 - x + x^2 - 2*x^3 + 6*x^4 - 23*x^5 + 104*x^6 - 531*x^7 + 2982*x^8 -+...
PROG
(PARI) {a(n)=local(A, B, F); if(n<1, 0, F=x+2*x^2-3*x^3+x*O(x^n); A=F; for(j=0, n, for(i=0, j, B=serreverse(A); A=(A+subst(B, x, A/(1-x)))/2); A=round(A)); polcoeff(A, n, x))}
(PARI) /* A(x) = x + A(x)*Series_Reversion(A(x)): */
{a(n)=local(A=x+x^2); for(i=1, n, A=x+A*serreverse(A+x*O(x^n))); polcoeff(A, n)}
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 12 2005, Jul 23 2011
EXTENSIONS
Initial zero removed and offset changed to 1 by Paul D. Hanna, Jul 23 2011
STATUS
approved