login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107098
The self-COMPOSE transform of A107097 and also the partial sums of A107097: g.f. A(x) = G(G(x)) = G(x)/(1-x) where G(x) is the g.f. of A107097.
1
0, 1, 2, 2, 3, 0, 13, -50, 289, -1693, 10736, -72091, 510498, -3792518, 29447687, -238250274, 2003475307, -17473865437, 157785848332, -1472797717102, 14191079794761, -140977192451948, 1442305028220567, -15180799919267781, 164228909550516306, -1824477798876645279
OFFSET
0,3
FORMULA
G.f. A(x) = series-reversion of (G(-x)+x)/x where G(x) is g.f. for A030266.
EXAMPLE
Series reversion of g.f.:
x + 2*x^2 + 2*x^3 + 3*x^4 + 13*x^6 - 50*x^7 + 289*x^8 -+...
equals (G(-x)+x)/x where G(x) is g.f. for A030266:
x - 2*x^2 + 6*x^3 - 23*x^4 + 104*x^5 - 531*x^6 +-...
PROG
(PARI) {a(n)=local(A, B, F); if(n<1, 0, F=x+2*x^2-3*x^3+x*O(x^n); A=F; for(j=0, n, for(i=0, j, B=serreverse(A); A=(A+subst(B, x, A/(1-x)))/2); A=round(A)); polcoeff(A/(1-x), n, x))}
CROSSREFS
Sequence in context: A342314 A099118 A320999 * A293837 A181736 A322987
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 12 2005
STATUS
approved