login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107099
G.f. satisfies A(A(x)) = x + 4*x^3, where A(x) = Sum_{n>=0} a(n)*x^(2*n+1).
2
1, 2, -6, 36, -266, 2028, -13596, 50088, 566694, -16598580, 232284876, -1912070088, 631155132, 239439857272, -2781218767224, -17362458802992, 795693633448710, -458070639409908, -335724554310292548, 4520379769156382616, 109439050270732883028, -3828757746830590219608
OFFSET
0,2
COMMENTS
Coefficients [x^n] A(x) = 0 (mod 3) except at n = 3^k (conjecture).
LINKS
EXAMPLE
A(x) = 1*x + 2*x^3 - 6*x^5 + 36*x^7 - 266*x^9 + 2028*x^11 - 13596*x^13 +-...
PROG
(PARI) b(n) = local(A, B, F); F=x+4*x^3+x*O(x^n); A=F; if(n==0, 0, for(i=0, n, B=serreverse(A); A=(A+subst(B, x, F))/2); polcoeff(A, n, x));
a(n) = b(2*n+1);
CROSSREFS
Sequence in context: A369091 A162697 A377533 * A143021 A007657 A234235
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 13 2005
STATUS
approved