login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143021 Number of vertices of degree 1 in all non-crossing connected graphs on n points on a circle. 1
2, 6, 36, 270, 2244, 19740, 179880, 1678446, 15927780, 153055188, 1485010488, 14518525164, 142821228648, 1412109087480, 14021321053392, 139725123309486, 1396698760714788, 13998927825197220, 140638610864578200 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

LINKS

Andrew Howroyd, Table of n, a(n) for n = 2..200

P. Flajolet and M. Noy, Analytic combinatorics of noncrossing configurations, Discrete Math. 204 (1999), 203-229.

FORMULA

a(n) = n*A089436(n).

G.f.: z*(d/dz)g^2, where g=g(z), the g.f. for the number of non-crossing connected graphs on n nodes on a circle, satisfies g^3 + g^2 - 3zg + 2z^2 = 0 (A007297).

EXAMPLE

a(3)=6 because in the graphs (AB,BC,CA), (AB,AC), (AB,BC) and (AC,BC) the vertices of degree 1 are (none), {B,C}, {A,C} and {A,B}.

MAPLE

g:=-1/3+(2/3)*sqrt(1+9*z)*sin((1/3)*arcsin(((2+27*z+54*z^2)*1/2)/(1+9*z)^(3/2))): ser:=series(z*(diff(g^2, z)), z=0, 25): seq(coeff(ser, z, n), n=2..21);

MATHEMATICA

terms = 19;

g[x_] = 0; Do[g[x_] = g[x]^2 + x (1+g[x])^3 + O[x]^(terms+2), {terms+2}];

Drop[CoefficientList[(x+x g[x])^2+O[x]^(terms+2), x], 2] Range[2, terms+1] (* Jean-Fran├žois Alcover, Jul 29 2018, after A089436 and Andrew Howroyd *)

PROG

(PARI) { my(n=30); Vec(deriv((x+x*serreverse((x-x^2)/(1+x)^3 + O(x^n)))^2)) } \\ Andrew Howroyd, Dec 22 2017

CROSSREFS

Cf. A007297, A089436.

Sequence in context: A096939 A162697 A107099 * A007657 A234235 A277740

Adjacent sequences:  A143018 A143019 A143020 * A143022 A143023 A143024

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Jul 30 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 12:31 EDT 2019. Contains 328026 sequences. (Running on oeis4.)