login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of vertices of degree 1 in all non-crossing connected graphs on n points on a circle.
1

%I #17 Jul 22 2022 13:01:54

%S 2,6,36,270,2244,19740,179880,1678446,15927780,153055188,1485010488,

%T 14518525164,142821228648,1412109087480,14021321053392,

%U 139725123309486,1396698760714788,13998927825197220,140638610864578200

%N Number of vertices of degree 1 in all non-crossing connected graphs on n points on a circle.

%H Andrew Howroyd, <a href="/A143021/b143021.txt">Table of n, a(n) for n = 2..200</a>

%H P. Flajolet and M. Noy, <a href="http://dx.doi.org/10.1016/S0012-365X(98)00372-0">Analytic combinatorics of noncrossing configurations</a>, Discrete Math. 204 (1999), 203-229.

%F a(n) = n*A089436(n).

%F G.f.: z*(d/dz)g^2, where g=g(z), the g.f. for the number of non-crossing connected graphs on n nodes on a circle, satisfies g^3 + g^2 - 3zg + 2z^2 = 0 (A007297).

%F D-finite with recurrence (n-1)*(n-2)*a(n) -34*(n-2)*(n-4)*a(n-1) +4*(29*n^2-396*n+937)*a(n-2) +24*(153*n^2-1071*n+1810)*a(n-3) -2688*(3*n-14)*(3*n-16)*a(n-4)=0. - _R. J. Mathar_, Jul 22 2022

%e a(3)=6 because in the graphs (AB,BC,CA), (AB,AC), (AB,BC) and (AC,BC) the vertices of degree 1 are (none), {B,C}, {A,C} and {A,B}.

%p g:=-1/3+(2/3)*sqrt(1+9*z)*sin((1/3)*arcsin(((2+27*z+54*z^2)*1/2)/(1+9*z)^(3/2))): ser:=series(z*(diff(g^2,z)),z=0,25): seq(coeff(ser,z,n), n=2..21);

%t terms = 19;

%t g[x_] = 0; Do[g[x_] = g[x]^2 + x (1+g[x])^3 + O[x]^(terms+2), {terms+2}];

%t Drop[CoefficientList[(x+x g[x])^2+O[x]^(terms+2), x], 2] Range[2, terms+1] (* _Jean-François Alcover_, Jul 29 2018, after A089436 and _Andrew Howroyd_ *)

%o (PARI) { my(n=30); Vec(deriv((x+x*serreverse((x-x^2)/(1+x)^3 + O(x^n)))^2)) } \\ _Andrew Howroyd_, Dec 22 2017

%Y Cf. A007297, A089436.

%K nonn

%O 2,1

%A _Emeric Deutsch_, Jul 30 2008