login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162697
E.g.f. satisfies: A(x) = 1+x + x^2*exp(x*A(x)).
1
1, 1, 2, 6, 36, 260, 2190, 23562, 294056, 4145976, 66518010, 1187366510, 23307288972, 500683995396, 11669239646246, 293211947901810, 7905976017270480, 227653751742812912, 6972326784534024306
OFFSET
0,3
FORMULA
a(n) = n!*Sum_{k=0..n} Sum_{j=0..k} C(j+1,n-k)/(j+1) * C(n-k,k-j)*(k-j)^j/j!.
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then
a(n,m) = n!*Sum_{k=0..n} Sum_{j=0..k} m*C(j+m,n-k)/(j+m) * C(n-k,k-j)*(k-j)^j/j!.
...
exp(x*A(x)) = G(x) = exp(x+x^2+x^3*G(x)) is the e.g.f. of A162161:
a(n) = n*(n-1)*A162161(n-2) for n>=2.
E.g.f.: 1 + x - LambertW(-exp(x*(1+x))*x^3)/x. - Vaclav Kotesovec, Feb 26 2014
a(n) ~ sqrt(2*r^2+r+3) * n^(n-1) / (exp(n) * r^(n+1)), where r = 0.542223654754281322169639... is the root of the equation exp(r^2+r+1)*r^3 = 1. - Vaclav Kotesovec, Feb 26 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 6*x^3/3! + 36*x^4/4! + 260*x^5/5! +...
exp(x*A(x)) = 1 + x + 3*x^2/2! + 13*x^3/3! + 73*x^4/4! + 561*x^5/5! +...
log(A(x)) = x + x^2/2! + 2*x^3/3! + 18*x^4/4! + 104*x^5/5! + 750*x^6/6! +...
MATHEMATICA
CoefficientList[Series[1 + x - LambertW[-E^(x*(1+x))*x^3]/x, {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 26 2014 *)
PROG
(PARI) {a(n, m=1)=n!*sum(k=0, n, sum(j=0, k, m*binomial(j+m, n-k)/(j+m)*binomial(n-k, k-j)*(k-j)^j/j!))}
CROSSREFS
Cf. A162161.
Sequence in context: A351825 A358080 A369091 * A377533 A107099 A143021
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 11 2009
STATUS
approved