The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A351825 Total number of size 2 lists in all sets of lists partitioning [n] (cf. A000262). 1
 0, 0, 2, 6, 36, 260, 2190, 21042, 226856, 2709576, 35491770, 505620830, 7780224012, 128555409996, 2269569526406, 42625044254730, 848404205856720, 17836074466842512, 394872870912995826, 9181542826326252726, 223680717959853460340, 5697036951307194432660, 151396442683371572351742 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..22. FORMULA a(n) = 2*binomial(n,2)*A000262(n-2). E.g.f.: x^2*exp(x/(1-x)) = d/dy G(x,y)|y=1 where G(x,y) is the e.g.f. for A351823. a(n) = Sum_{k=0..floor(n/2)} k * A351823(n,k). a(n) ~ n^(n - 1/4) * exp(2*sqrt(n) - n - 1/2) / sqrt(2) * (1 - 101/(48*sqrt(n))). - Vaclav Kotesovec, Feb 21 2022 a(n) = 2 * A129652(n,2). - Alois P. Heinz, Feb 22 2022 Recurrence: (n-2)*a(n) = n*(2*n-5)*a(n-1) - (n-4)*(n-1)*n*a(n-2). - Vaclav Kotesovec, Mar 20 2023 MATHEMATICA nn = 22; Range[0, nn]! CoefficientList[Series[D[Exp[ x/(1 - x) - x ^2 + y x^2], y] /. y -> 1, {x, 0, nn}], x] Join[{0, 0, 2}, Table[n!*Hypergeometric1F1[n-1, 2, 1]/E, {n, 3, 25}]] (* Vaclav Kotesovec, Feb 21 2022 *) CROSSREFS Cf. A000262, A006152, A129652, A351823. Sequence in context: A109284 A060178 A096939 * A358080 A369091 A162697 Adjacent sequences: A351822 A351823 A351824 * A351826 A351827 A351828 KEYWORD nonn AUTHOR Geoffrey Critzer, Feb 20 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 15:25 EDT 2024. Contains 375022 sequences. (Running on oeis4.)