|
|
A351823
|
|
Triangular array read by rows. T(n,k) is the number of sets of lists (as in A000262(n)) with exactly k size 2 lists, n >= 0, 0 <= k <= floor(n/2).
|
|
1
|
|
|
1, 1, 1, 2, 7, 6, 49, 12, 12, 301, 140, 60, 2281, 1470, 180, 120, 21211, 12642, 2940, 840, 220417, 127736, 41160, 3360, 1680, 2528569, 1527192, 455112, 70560, 15120, 32014801, 19837530, 5748120, 1234800, 75600, 30240, 442974511, 278142590, 83995560, 16687440, 1940400, 332640
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
From the asymptotic estimate of A000262(n) provided by Vaclav Kotesovec we deduce that in the limit as n gets big the average number of size 2 lists is equal to 1. In other words, lim_{n->oo} Sum_{k>=1} T(n,k)*k/A000262(n) = 1. Generally for any j >= 1, the average number of size j lists equals 1 in the limit as n -> oo.
|
|
LINKS
|
|
|
FORMULA
|
E.g.f.: exp(x/(1-x) - x^2 + y*x^2).
|
|
EXAMPLE
|
Triangle T(n,k) begins:
1;
1;
1, 2;
7, 6;
49, 12, 12;
301, 140, 60;
2281, 1470, 180, 120;
21211, 12642, 2940, 840;
...
|
|
MAPLE
|
b:= proc(n) option remember; expand(`if`(n=0, 1, add(j!*
`if`(j=2, x, 1)*b(n-j)*binomial(n-1, j-1), j=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
|
|
MATHEMATICA
|
nn = 7; Map[Select[#, # > 0 &] &, Range[0, nn]! CoefficientList[Series[Exp[ x/(1 - x) - x ^2 + y x^2], {x, 0, nn}], {x, y}]] // Grid
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,tabf
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|