login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113235
Number of partitions of {1,..,n} into any number of lists of size not equal to 2, where a list means an ordered subset, cf. A000262.
8
1, 1, 1, 7, 49, 301, 2281, 21211, 220417, 2528569, 32014801, 442974511, 6638604721, 107089487077, 1849731389689, 34051409587651, 665366551059841, 13751213558077681, 299644435399909537, 6864906328749052759, 164941239260973870001, 4146673091958686331421
OFFSET
0,4
LINKS
FORMULA
Expression as a sum involving generalized Laguerre polynomials, in Mathematica notation: a(n)=n!*Sum[(-1)^k*LaguerreL[n - 2*k, -1, -1]/k!, {k, 0, Floor[n/2]}], n=0, 1... .
E.g.f.: exp(x*(1-x+x^2)/(1-x)).
From Vaclav Kotesovec, Nov 13 2017: (Start)
a(n) = (2*n - 1)*a(n-1) - (n-1)*n*a(n-2) + 4*(n-2)*(n-1)*a(n-3) - 2*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ exp(-3/2 + 2*sqrt(n) - n) * n^(n-1/4) / sqrt(2) * (1 + 91/(48*sqrt(n))).
(End)
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n-1, j-1)*j!, j=[1, $3..n]))
end:
seq(a(n), n=0..30); # Alois P. Heinz, May 10 2016
MATHEMATICA
f[n_] := n!*Sum[(-1)^k*LaguerreL[n - 2*k, -1, -1]/k!, {k, 0, Floor[n/2]}]; Table[ f[n], {n, 0, 19}]
Range[0, 19]!*CoefficientList[ Series[ Exp[x*(1 - x + x^2)/(1 - x)], {x, 0, 19}], x] (* Robert G. Wilson v, Oct 21 2005 *)
PROG
(PARI) m=30; v=concat([1, 1, 7, 49], vector(m-4)); for(n=5, m, v[n]=(2*n-1)*v[n-1]-(n-1)*n*v[n-2]+4*(n-1)*(n-2)*v[n-3]-2*(n-1)*(n-2)*(n-3)*v[n -4]); concat([1], v) \\ G. C. Greubel, May 16 2018
(PARI) x='x+O('x^99); Vec(serlaplace(exp(x*(1-x+x^2)/(1-x)))) \\ Altug Alkan, May 17 2018
(Magma) I:=[1, 1, 7, 49]; [1] cat [n le 4 select I[n] else (2*n-1)*Self(n -1) - (n-1)*n*Self(n-2) +4*(n-1)*(n-2)*Self(n-3) -2*(n-1)*(n-2)*(n-3)* Self(n-4): n in [1..30]]; // G. C. Greubel, May 16 2018
CROSSREFS
This sequence, A113236 and A113237 all describe the same type of mathematical structure: lists with some restrictions.
Sequence in context: A188748 A188986 A146884 * A294261 A294293 A357146
KEYWORD
nonn
AUTHOR
Karol A. Penson, Oct 19 2005
STATUS
approved