login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of {1,..,n} into any number of lists of size not equal to 2, where a list means an ordered subset, cf. A000262.
8

%I #25 Sep 08 2022 08:45:23

%S 1,1,1,7,49,301,2281,21211,220417,2528569,32014801,442974511,

%T 6638604721,107089487077,1849731389689,34051409587651,665366551059841,

%U 13751213558077681,299644435399909537,6864906328749052759,164941239260973870001,4146673091958686331421

%N Number of partitions of {1,..,n} into any number of lists of size not equal to 2, where a list means an ordered subset, cf. A000262.

%H Alois P. Heinz, <a href="/A113235/b113235.txt">Table of n, a(n) for n = 0..444</a>

%F Expression as a sum involving generalized Laguerre polynomials, in Mathematica notation: a(n)=n!*Sum[(-1)^k*LaguerreL[n - 2*k, -1, -1]/k!, {k, 0, Floor[n/2]}], n=0, 1... .

%F E.g.f.: exp(x*(1-x+x^2)/(1-x)).

%F From _Vaclav Kotesovec_, Nov 13 2017: (Start)

%F a(n) = (2*n - 1)*a(n-1) - (n-1)*n*a(n-2) + 4*(n-2)*(n-1)*a(n-3) - 2*(n-3)*(n-2)*(n-1)*a(n-4).

%F a(n) ~ exp(-3/2 + 2*sqrt(n) - n) * n^(n-1/4) / sqrt(2) * (1 + 91/(48*sqrt(n))).

%F (End)

%p a:= proc(n) option remember; `if`(n=0, 1, add(

%p a(n-j)*binomial(n-1, j-1)*j!, j=[1, $3..n]))

%p end:

%p seq(a(n), n=0..30); # _Alois P. Heinz_, May 10 2016

%t f[n_] := n!*Sum[(-1)^k*LaguerreL[n - 2*k, -1, -1]/k!, {k, 0, Floor[n/2]}]; Table[ f[n], {n, 0, 19}]

%t Range[0, 19]!*CoefficientList[ Series[ Exp[x*(1 - x + x^2)/(1 - x)], {x, 0, 19}], x] (* _Robert G. Wilson v_, Oct 21 2005 *)

%o (PARI) m=30; v=concat([1,1,7,49], vector(m-4)); for(n=5, m, v[n]=(2*n-1)*v[n-1]-(n-1)*n*v[n-2]+4*(n-1)*(n-2)*v[n-3]-2*(n-1)*(n-2)*(n-3)*v[n -4]); concat([1], v) \\ _G. C. Greubel_, May 16 2018

%o (PARI) x='x+O('x^99); Vec(serlaplace(exp(x*(1-x+x^2)/(1-x)))) \\ _Altug Alkan_, May 17 2018

%o (Magma) I:=[1, 1, 7, 49]; [1] cat [n le 4 select I[n] else (2*n-1)*Self(n -1) - (n-1)*n*Self(n-2) +4*(n-1)*(n-2)*Self(n-3) -2*(n-1)*(n-2)*(n-3)* Self(n-4): n in [1..30]]; // _G. C. Greubel_, May 16 2018

%Y Cf. A000262, A000266, A005251, A052845, A097514.

%Y This sequence, A113236 and A113237 all describe the same type of mathematical structure: lists with some restrictions.

%K nonn

%O 0,4

%A _Karol A. Penson_, Oct 19 2005