login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113236
Number of partitions of {1,..,n} into any number of lists of size not equal to 3, where a list means an ordered subset, cf. A000262.
3
1, 1, 3, 7, 49, 321, 2851, 24823, 256257, 2887489, 36759331, 507010791, 7597222513, 122184356737, 2106356007939, 38693238713431, 754792977928321, 15572911248409473, 338800604611562947, 7749991799652960199, 185934065196259734321, 4667877395135551746241
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp(x*(1-x^2+x^3)/(1-x)).
Expression as a sum involving generalized Laguerre polynomials, in Mathematica notation: a(n)=n!*Sum[(-1)^k*LaguerreL[n - 3*k, -1, -1]/k!, {k, 0, Floor[n/3]}], n=0, 1....
a(n) ~ exp(-3/2+2*sqrt(n)-n)*n^(n-1/4)/sqrt(2). - Vaclav Kotesovec, Jun 22 2013
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=3, 0, a(n-j)*binomial(n-1, j-1)*j!), j=1..n))
end:
seq(a(n), n=0..30); # Alois P. Heinz, May 10 2016
MATHEMATICA
Range[0, 18]!*CoefficientList[ Series[ Exp[x*(1-x^2+x^3)/(1 - x)], {x, 0, 18}], x] (* Zerinvary Lajos, Mar 23 2007 *)
a[n_] := a[n] = If[n==0, 1, Sum[If[j==3, 0, a[n-j]*Binomial[n-1, j-1]*j!], {j, 1, n}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 11 2017, after Alois P. Heinz *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace(exp(x*(1-x^2+x^3)/(1-x)))) \\ G. C. Greubel, May 17 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x*(1-x^2+x^3)/(1-x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 17 2018
CROSSREFS
Sequence in context: A118393 A362522 A113775 * A035499 A273092 A120788
KEYWORD
nonn
AUTHOR
Karol A. Penson, Oct 19 2005
STATUS
approved