login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114329
Triangle T(n,k) is the number of partitions of an n-set into lists (cf. A000262) with k lists of size 1.
2
1, 0, 1, 2, 0, 1, 6, 6, 0, 1, 36, 24, 12, 0, 1, 240, 180, 60, 20, 0, 1, 1920, 1440, 540, 120, 30, 0, 1, 17640, 13440, 5040, 1260, 210, 42, 0, 1, 183120, 141120, 53760, 13440, 2520, 336, 56, 0, 1, 2116800, 1648080, 635040, 161280, 30240, 4536, 504, 72, 0, 1
OFFSET
0,4
COMMENTS
The average number of size 1 lists goes to 1 as n->infinity. In other words, lim_{n->infinity} Sum_{k>=1} T(n,k)*k/A000262(n) = 1. - Geoffrey Critzer, Feb 20 2022 (after asymptotic limits by Vaclav Kotesovec given in A000262)
LINKS
FORMULA
E.g.f.: exp(x/(1-x)+(y-1)*x). More generally, e.g.f. for number of partitions of n-set into lists with k lists of size m is exp(x/(1-x)+(y-1)*x^m).
EXAMPLE
Triangle begins:
1;
0, 1;
2, 0, 1;
6, 6, 0, 1;
36, 24, 12, 0, 1;
240, 180, 60, 20, 0, 1;
...
MAPLE
t:=taylor(exp(x/(1-x)+(y-1)*x), x, 11):for n from 0 to 10 do for k from 0 to n do printf("%d, ", coeff(n!*coeff(t, x, n), y, k)): od: printf("\n"): od: # Nathaniel Johnston, Apr 27 2011
# second Maple program:
b:= proc(n) option remember; expand(`if`(n=0, 1, add(j!*
`if`(j=1, x, 1)*b(n-j)*binomial(n-1, j-1), j=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
seq(T(n), n=0..10); # Alois P. Heinz, Feb 19 2022
MATHEMATICA
nn = 10; Table[Take[(Range[0, nn]! CoefficientList[ Series[Exp[ x/(1 - x) - x + y x], {x, 0, nn}], {x, y}])[[i]], i], {i, 1, nn}] // Grid (* Geoffrey Critzer, Feb 19 2022 *)
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Vladeta Jovovic, Feb 06 2006
STATUS
approved