login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361956
Triangle read by rows: T(n,k) is the number of labeled tiered posets with n elements and height k.
3
1, 0, 1, 0, 1, 2, 0, 1, 6, 6, 0, 1, 50, 36, 24, 0, 1, 510, 510, 240, 120, 0, 1, 7682, 10620, 4800, 1800, 720, 0, 1, 161406, 312606, 136920, 47040, 15120, 5040, 0, 1, 4747010, 13439076, 5630184, 1678320, 493920, 141120, 40320, 0, 1, 194342910, 821218110, 319384800, 83963880, 21137760, 5594400, 1451520, 362880
OFFSET
0,6
COMMENTS
A tiered poset is a partially ordered set in which every maximal chain has the same length.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50).
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 1, 6, 6;
0, 1, 50, 36, 24;
0, 1, 510, 510, 240, 120;
0, 1, 7682, 10620, 4800, 1800, 720;
0, 1, 161406, 312606, 136920, 47040, 15120, 5040;
...
PROG
(PARI)
S(M)={my(N=matrix(#M-1, #M-1, i, j, sum(k=1, i-j+1, (2^j-1)^k*M[i-j+1, k])/j!)); for(i=1, #N, for(j=1, i, N[i, j] -= sum(k=1, j-1, N[i-k, j-k]/k!))); N}
C(n)={my(M=matrix(n+1, n+1), R=M); M[1, 1]=R[1, 1]=1; for(h=1, n, M=S(M); for(i=h, n, R[i+1, h+1] = i!*vecsum(M[i-h+1, ]))); R}
{ my(A=C(7)); for(i=1, #A, print(A[i, 1..i])) }
CROSSREFS
Row sums are A223911.
Column k=2 is A052332.
Main diagonal is A000142.
The unlabeled version is A361957.
Sequence in context: A131689 A278075 A114329 * A241011 A220905 A353451
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Apr 02 2023
STATUS
approved