OFFSET
0,3
FORMULA
a(n) = n!*Sum_{k=0..n} Sum(j=0..k} (j+1)^(n-k-1)/(n-k)! * C(n-k,k-j)*C(k-j,j).
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then
a(n) = n!*Sum_{k=0..n} Sum(j=0..k} m*(j+m)^(n-k-1)/(n-k)! * C(n-k,k-j)*C(k-j,j).
E.g.f.: A(x) = exp(x*F(x)) where F(x) is the e.g.f. of A162697. [From Paul D. Hanna, Jul 18 2009]
E.g.f.: -LambertW(-exp(x*(1+x))*x^3)/x^3. - Vaclav Kotesovec, Jan 10 2014
a(n) ~ sqrt(2*r^2+r+3) * n^(n-1) / (exp(n) * r^(n+3)), where r = 0.542223654754281322169639... is the root of the equation exp(r^2+r+1)*r^3 = 1. - Vaclav Kotesovec, Jan 10 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 73*x^4/4! + 561*x^5/5! +...
MATHEMATICA
CoefficientList[Series[-ProductLog[-E^(x*(1+x))*x^3]/x^3, {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 10 2014 *)
PROG
(PARI) {a(n, m=1)=n!*sum(k=0, n, sum(j=0, k, m*(j+m)^(n-k-1)/(n-k)!*binomial(n-k, k-j)*binomial(k-j, j)))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 26 2009
STATUS
approved