login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162161
E.g.f. satisfies: A(x) = exp(x + x^2 + x^3*A(x)).
2
1, 1, 3, 13, 73, 561, 5251, 57583, 739089, 10794241, 176570371, 3209512791, 64116701353, 1396247370961, 32941566738627, 836962322583871, 22785381648804001, 661810614930630273, 20428823103775758595
OFFSET
0,3
FORMULA
a(n) = n!*Sum_{k=0..n} Sum(j=0..k} (j+1)^(n-k-1)/(n-k)! * C(n-k,k-j)*C(k-j,j).
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then
a(n) = n!*Sum_{k=0..n} Sum(j=0..k} m*(j+m)^(n-k-1)/(n-k)! * C(n-k,k-j)*C(k-j,j).
E.g.f.: A(x) = exp(x*F(x)) where F(x) is the e.g.f. of A162697. [From Paul D. Hanna, Jul 18 2009]
E.g.f.: -LambertW(-exp(x*(1+x))*x^3)/x^3. - Vaclav Kotesovec, Jan 10 2014
a(n) ~ sqrt(2*r^2+r+3) * n^(n-1) / (exp(n) * r^(n+3)), where r = 0.542223654754281322169639... is the root of the equation exp(r^2+r+1)*r^3 = 1. - Vaclav Kotesovec, Jan 10 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 73*x^4/4! + 561*x^5/5! +...
MATHEMATICA
CoefficientList[Series[-ProductLog[-E^(x*(1+x))*x^3]/x^3, {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 10 2014 *)
PROG
(PARI) {a(n, m=1)=n!*sum(k=0, n, sum(j=0, k, m*(j+m)^(n-k-1)/(n-k)!*binomial(n-k, k-j)*binomial(k-j, j)))}
CROSSREFS
Cf. A162697. [From Paul D. Hanna, Jul 18 2009]
Sequence in context: A205572 A128196 A367747 * A119013 A190878 A156154
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 26 2009
STATUS
approved