The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A119013 Eigenvector of triangle A118588; E.g.f. satisfies: A(x) = exp(x)*A(x^2+x^3). 2
 1, 1, 3, 13, 73, 621, 5491, 60313, 743793, 10115353, 158914531, 2815311621, 55094081593, 1142894689093, 25142695616403, 594557634923281, 15084112106943841, 407999468524242993, 11669035487641120963 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS E.g.f. of triangle A118588 is exp(x + y*(x^2+x^3)); note the similarity to the e.g.f. of this sequence. More generally, the e.g.f. of an eigenvectors can be determined from the e.g.f. of a triangle as follows. [ Given a triangle with e.g.f.: exp(x + y*x*F(x)) such that F(0) = 0, then the eigenvector has e.g.f.: exp(G(x)) where o.g.f. G(x) satisfies: G(x) = x + G(x*F(x)). ] LINKS FORMULA Log(A(x)) = o.g.f. of A014535 (B-trees of order 3 with n leaves). EXAMPLE A(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 73*x^4/4! + 621*x^5/5! +... log(A(x)) = o.g.f. of A014535 = x + x^2+ x^3+ x^4+ 2*x^5+ 2*x^6+ 3*x^7+ 4*x^8+ 5*x^9+ 8*x^10 +... PROG (PARI) {a(n)=if(n==0, 1, sum(k=0, n\2, a(k)*n!*polcoeff(polcoeff(exp(x+y*(x^2+x^3)+x*O(x^n)+y*O(y^k)), n, x), k, y)))} CROSSREFS Cf. A118588 (triangle), A118589 (row sums), A014535 (log(A(x)). Sequence in context: A205572 A128196 A162161 * A190878 A156154 A334785 Adjacent sequences:  A119010 A119011 A119012 * A119014 A119015 A119016 KEYWORD nonn AUTHOR Paul D. Hanna, May 08 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 22:04 EDT 2021. Contains 343955 sequences. (Running on oeis4.)