The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118588 Triangle generated by e.g.f.: A(x,y) = exp(x + y*(x^2+x^3)), read by rows of length [n/2+1]. 2
 1, 1, 1, 2, 1, 12, 1, 36, 12, 1, 80, 180, 1, 150, 1260, 120, 1, 252, 5460, 3360, 1, 392, 17640, 43680, 1680, 1, 576, 46872, 342720, 75600, 1, 810, 108360, 1839600, 1587600, 30240, 1, 1100, 225720, 7539840, 20235600, 1995840, 1, 1452, 433620, 25391520 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS E.g.f. V(x) of eigenvector A119013 satisfies: V(x) = exp(x)*V(x^2+x^3); note the similarity to e.g.f. of this triangle. LINKS EXAMPLE Triangle begins: 1; 1; 1,2; 1,12; 1,36,12; 1,80,180; 1,150,1260,120; 1,252,5460,3360; 1,392,17640,43680,1680; 1,576,46872,342720,75600; ... O.g.f. for columns: 0!/0!*(1)/(1-x); 2!/1!*(1+2*x)/(1-x)^4; 4!/2!*(1+8*x+21*x^2)/(1-x)^7; 6!/3!*(1+18*x+129*x^2+356*x^3)/(1-x)^10; 8!/4!*(1+32*x+438*x^2+2984*x^3+8425*x^4)/(1-x)^13; ... PROG (PARI) {T(n, k)=n!*polcoeff(polcoeff(exp(x+y*(x^2+x^3)+x*O(x^n)+y*O(y^k)), n, x), k, y)} CROSSREFS Cf. A118589 (row sums), A119013 (eigenvector). Sequence in context: A051190 A072512 A271531 * A259633 A174500 A249163 Adjacent sequences:  A118585 A118586 A118587 * A118589 A118590 A118591 KEYWORD nonn,tabl AUTHOR Paul D. Hanna, May 08 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 17:25 EDT 2021. Contains 345144 sequences. (Running on oeis4.)