login
A072512
Product of all n - d, where 1 < d < n and d is a divisor of n.
2
1, 1, 1, 2, 1, 12, 1, 24, 6, 40, 1, 4320, 1, 84, 120, 1344, 1, 25920, 1, 43200, 252, 220, 1, 31933440, 20, 312, 432, 183456, 1, 136080000, 1, 322560, 660, 544, 840, 12563527680, 1, 684, 936, 919296000, 1, 1155772800, 1, 1219680, 1814400, 1012, 1
OFFSET
1,4
COMMENTS
For prime p, a(p) = 1.
If n is not a prime or the square of a prime then n divides a(n).
LINKS
EXAMPLE
For n = 16 the nontrivial divisors d are 2,4 and 8, so a(16) = (16-2)*(16-4)*(16-8) = 14*12*8 = 1344.
MAPLE
f:= proc(n) local d; mul(n-d, d = numtheory:-divisors(n) minus {1, n}) end proc:
map(f, [$1..50]); # Robert Israel, Dec 30 2024
PROG
(PARI) a(n) = my(d=divisors(n)); prod(j=2, matsize(d)[2]-1, n-d[j]);
CROSSREFS
Cf. A072513.
Sequence in context: A163088 A105608 A051190 * A271531 A118588 A259633
KEYWORD
nonn,look
AUTHOR
Amarnath Murthy, Jul 28 2002
EXTENSIONS
Edited and extended by Klaus Brockhaus, Jul 31 2002
STATUS
approved