OFFSET
2,4
COMMENTS
LINKS
E. Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
FORMULA
G.f.: G(t,z)=1/[1-zr(t,z)]-1, where r=r(t,z) is the Narayana function, defined by (1+r)(1+tr)z=r, r(t,0)=0. See Maple program for the explicit form of G(t,z).
EXAMPLE
T(5,2)=6 because we have uud|ud|uuddd, uuudd|ud|udd, uud|uudd|udd, uuud|ud|uddd, uuud|udd|udd and uud|uud|uddd (the valleys above the x-axis are marked with |).
Triangle starts:
1;
1,1;
2,3,1;
3,8,6,1;
5,18,23,10,1;
MAPLE
G:=2*t/(2*t+z*t+z-1+sqrt(z^2*t^2-2*z^2*t-2*z*t+z^2-2*z+1))-1: Gser:=simplify(series(G, z=0, 15)): for n from 2 to 12 do P[n]:=sort(coeff(Gser, z^n)) od: for n from 2 to 12 do seq(coeff(P[n], t, j), j=0..n-2) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, May 08 2006
STATUS
approved