login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340440
Decimal expansion of Sum_{k>=2} log(k)/(k^2-1).
4
1, 0, 2, 3, 1, 3, 8, 7, 2, 6, 4, 2, 7, 9, 3, 9, 2, 9, 5, 5, 3, 5, 0, 8, 8, 0, 7, 6, 9, 7, 5, 2, 1, 8, 0, 9, 7, 4, 9, 2, 1, 4, 5, 2, 7, 9, 3, 6, 6, 0, 8, 3, 2, 5, 9, 3, 6, 6, 3, 4, 8, 6, 1, 7, 9, 1, 2, 1, 6, 5, 3, 1, 9, 2, 2, 8, 5, 2, 3, 2, 7, 8, 9, 2, 2, 7, 5, 3, 1, 9, 7, 2, 4, 1, 2, 1, 7, 0, 8, 7, 5, 0, 1, 0, 7
OFFSET
1,3
LINKS
R. J. Mathar, The series limit of sum_k 1/(k log k (log log k)^2), arXiv:0902.0789 [math.NA], 2009-2021, version 3, App. B.
FORMULA
Equals Sum_{i>=1} -zeta'(2i) = A073002 + A261506 - Sum_{i>=3} zeta'(2i).
Sum_{k>=2} log(k)/(k^2-s) = -Sum_{i>=1} s^(i-1)*zeta'(2i) for |s|<4. - R. J. Mathar, May 03 2021
Equals log(2)/2 + Sum_{k>=1} (zeta(2*k)-1)/(2*k-1). - Amiram Eldar, Jun 08 2021
EXAMPLE
1.0231387264279392955...
PROG
(PARI) sumpos(k=2, log(k)/(k^2-1)) \\ Michel Marcus, Jan 09 2021
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
R. J. Mathar, Jan 07 2021
STATUS
approved