login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119015
Denominators of "Farey fraction" approximations to e.
6
0, 1, 1, 1, 1, 2, 3, 4, 7, 11, 18, 25, 32, 39, 71, 110, 181, 252, 323, 394, 465, 536, 1001, 1537, 2538, 3539, 4540, 5541, 6542, 7543, 8544, 9545, 18089, 27634, 45723, 63812, 81901, 99990, 118079, 136168, 154257, 172346, 190435, 208524, 398959, 607483
OFFSET
0,6
COMMENTS
"Add" (meaning here to add the numerators and add the denominators, not to add the fractions) 1/0 to 1/1 to make the fraction bigger: 2/1, 3/1. Now 3/1 is too big, so add 2/1 to make the fraction smaller: 5/2, 8/3, 11/4. Now 11/4 is too small, so add 8/3 to make the fraction bigger: 19/7, ...
LINKS
Dave Rusin, Farey fractions on sci.math [Broken link]
Dave Rusin, Farey fractions on sci.math [Cached copy]
EXAMPLE
The fractions are 1/0, 0/1, 1/1, 2/1, 3/1, 5/2, 8/3, 11/4, 19/7, ...
MATHEMATICA
f[x_, n_] := (m = Floor[x]; f0 = {m, m+1/2, m+1}; r = ({a___, b_, c_, d___} /; b < x < c) :> {b, (Numerator[b] + Numerator[c]) / (Denominator[b] + Denominator[c]), c};
Join[{m, m+1}, NestList[# /. r &, f0, n-3][[All, 2]]]);
Join[{0, 1, 1}, f[E, 43] // Denominator]
(* Jean-François Alcover, May 18 2011 *)
CROSSREFS
For another version see A006259.
Cf. A097545, A097546 gives the similar sequence for pi. A119014 gives the numerators for this sequence.
Sequence in context: A060987 A359743 A006259 * A222329 A018145 A050195
KEYWORD
easy,frac,nonn
AUTHOR
Joshua Zucker, May 08 2006
STATUS
approved