

A119017


Primes from binary expansion of Pi, another version. Starting with the first bit of the binary expansion, A004601 = 1,1,0,0,1,0,0,1,0,0,0,0,1,1,1,1,1,1,0,1,1,0,1,... we move rightward until we encounter another 1. Since 11 (= 3 in decimal) is prime, we move to the next 1 and repeat the process.


2



3, 73, 4639, 67, 3, 3, 3, 3, 3, 5, 3, 5, 5, 5, 17, 17, 1069, 5, 3, 5, 17, 3, 9099300883537, 17, 3, 5, 19, 3, 17, 19, 3, 17, 3, 19, 3, 17, 5, 17, 5, 3, 3, 257, 3, 5, 3, 3, 131, 3, 3, 19, 3, 5, 17, 37, 5, 1153, 1033, 73, 19, 3, 3, 16657, 17, 17, 5, 19, 3, 19, 3, 3, 3, 3, 19, 3, 17, 3, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Records: 3, 73, 4649, 9099300883537, 37848784972821936516494858855515680431107854546647118951099098009925403829863969526043052181881, ..., .  Robert G. Wilson v, Jul 24 2006


LINKS

Table of n, a(n) for n=1..77.


EXAMPLE

11 = 3
1001001 = 73
1001000011111 = 4639
1000011 = 67
11 = 3
11 = 3
11 = 3


MATHEMATICA

ps = First@RealDigits[Pi, 2, 10^3]; lst = {}; Do[k = 1; While[fd = FromDigits[ Take[ps, k], 2]; EvenQ@fd  ! PrimeQ@fd, k++ ]; AppendTo[lst, fd]; j = 1; While[ ps[[j]] != 1, j++ ]; ps = Drop[ps, j], {n, 77}]; lst  Robert G. Wilson v, Jul 24 2006


CROSSREFS

Cf. A004601, A068425, A117721, A065987.
Sequence in context: A189306 A012810 A020517 * A307232 A002667 A145675
Adjacent sequences: A119014 A119015 A119016 * A119018 A119019 A119020


KEYWORD

nonn,base


AUTHOR

Russell Walsmith, Jul 23 2006


EXTENSIONS

More terms from Robert G. Wilson v, Jul 24 2006


STATUS

approved



