The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060987 Viggo Brun's ternary continued fraction algorithm applied to { log 2, log 3/2, log 5/4 } produces a list of triples (p,q,r); sequence gives q values. 2
 1, 2, 3, 4, 7, 11, 18, 20, 31, 51, 69, 120, 189, 258, 327, 358, 427 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The correct sequence would be 1, 2, 3, 4, 7, 11, 18, 20, 31, 51, 69, 120, 189, 258, 327, 358, 685, 1043, 1112, 2155, 2513, 4668, 7181, 9694, 12207, 14720, 17233, 19746,... as computed by the Maple program. R. J. Mathar, Feb 25 2018 REFERENCES V. Brun, Music and ternary continued fractions, Kgl. Norske Videnskabers Selskab Forh., 23 (No. 10, 1950). LINKS J. M. Barbour, Music and Ternary Continued Fractions, The American Mathematical Monthly, Vol. 55, No. 9 (Nov., 1948), pp. 545-555. Viggo Brun, Music and ternary continued fractions, Kgl. Norske Videnskabers Selskab Forh., 23 (No. 10, 1950), pages 38-40. [Annotated scanned copy] V. Brun, Musikk og Euklidske algoritmer (in Danish), Nordisk Mat. Tidskr, 9 (1961), 29-36. J. B. Rosser, Generalized Ternary Continued Fractions, The American Mathematical Monthly, Vol. 57, No. 8 (Oct., 1950), pp. 528-535. MAPLE Digits := 100 : c := evalf(log[10](5/4)) : b := evalf(log[10](3/2)) : a := evalf(log[10](2)) : a3 := [1, 0, 0] : b3 := [0, 1, 0] : c3 := [0, 0, 1] : for i from 1 to 30 do     a := a-b ;     b3 := [op(1, a3)+op(1, b3), op(2, a3)+op(2, b3), op(3, a3)+op(3, b3)] ;     if i > 2 then         printf("%d, ", b3[2]) ;     end if;     if a < b then         tmp := a ;         a := b;         b := tmp;         tmp3 := a3 ;         a3 := b3;         b3 := tmp3;     end if;     if b < c then         tmp3 := b ;         b := c;         c := tmp;         tmp3 := b3 ;         b3 := c3;         c3 := tmp3;     end if; end do: # R. J. Mathar, Feb 25 2018 CROSSREFS See A060986 for p values, A060988 for r values. Sequence in context: A192669 A339484 A072164 * A006259 A119015 A222329 Adjacent sequences:  A060984 A060985 A060986 * A060988 A060989 A060990 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, May 11 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 14 07:13 EDT 2021. Contains 343879 sequences. (Running on oeis4.)