login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060985
a(1) = 1; a(n+1) = a(n) + (largest triangular number <= a(n)).
6
1, 2, 3, 6, 12, 22, 43, 79, 157, 310, 610, 1205, 2381, 4727, 9383, 18699, 37227, 74355, 148660, 296900, 593735, 1187240, 2373810, 4746741, 9491481, 18981027, 37956907, 75910735, 151820416, 303627016, 607253419, 1214497244, 2428978214, 4857918665
OFFSET
1,2
COMMENTS
Arises in analyzing 'put-or-take' games (see Winning Ways, 484-486, 501-503), the prototype being Epstein's Put-or-Take-a-Square game.
REFERENCES
E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982.
LINKS
FORMULA
a(n+1) = a(n) + A061883(n) = a(n) + A057944(a(n)) = A061885(a(n)). - Henry Bottomley, May 12 2001
a(n) ~ 0.28276... * 2^n. - Charles R Greathouse IV, Jun 19 2011
MATHEMATICA
a[1] = 1; a[n_] := a[n] = Block[ {k = 1}, While[ k*(k + 1)/2 <= a[n - 1], k++ ]; a[n - 1] + k*(k - 1)/2]; Table[ a[n], {n, 1, 40} ]
f[n_]:=Module[{c=Floor[(Sqrt[1+8n]-1)/2]}, (c(c+1))/2]; NestList[#+f[#]&, 1, 40] (* Harvey P. Dale, Jun 19 2011 *)
PROG
(PARI) { default(realprecision, 1000); for (n=1, 1000, if (n<2, a=1, k=(sqrt(1 + 8*a) - 1)\2; a+=k*(k + 1)/2 ); write("b060985.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 16 2009
(Haskell)
a060985 n = a060985_list !! (n-1)
a060985_list = iterate a061885 1 -- Reinhard Zumkeller, Feb 03 2012
CROSSREFS
Sequence in context: A112575 A018079 A289920 * A371793 A355850 A363582
KEYWORD
nonn,easy,nice
AUTHOR
R. K. Guy, May 11 2001
EXTENSIONS
More terms from David W. Wilson, Henry Bottomley and Robert G. Wilson v, May 12 2001
STATUS
approved