login
A363582
Number of admissible mesa sets among Stirling permutations of order n.
1
1, 2, 3, 6, 12, 22, 44, 88, 169, 338, 676, 1322, 2644, 5288, 10433, 20866, 41732, 82736, 165472, 330944, 658012, 1316024, 2632048, 5242778, 10485556, 20971112, 41822049, 83644098, 167288196, 333885702, 667771404, 1335542808, 2667053601, 5334107202, 10668214404
OFFSET
1,2
REFERENCES
Nicolle González, Pamela E. Harris, Gordon Rojas Kirby, Mariana Smit Vega Garcia, and Bridget Eileen Tenner, "Mesas of Stirling permutations," preprint.
LINKS
FORMULA
Let n = 3*k+r, where r is in {0,1,2}, and let C_(x,y) be the rational Catalan numbers (A328901/A328902). Then a(n) = 2^(n-1) - Sum_{i=0..k-1} 2^(3*i+r)*C_(2*(k-i)-1,k-i).
EXAMPLE
For n = 4, the a(4) = 6 admissible pinnacle sets for Stirling permutations of order 4 are {}, {2}, {3}, {4}, {2,4}, and {3,4}.
MAPLE
a:= proc(n) option remember; `if`(n<4, n, (2*n*(2*n-3)*
a(n-1)+27*(n-4)*(n-2)*(a(n-3)/2-a(n-4)))/(n*(2*n-3)))
end:
seq(a(n), n=1..45); # Alois P. Heinz, Jun 13 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Bridget Tenner, Jun 10 2023
EXTENSIONS
More terms from Alois P. Heinz, Jun 13 2023
STATUS
approved