login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of admissible mesa sets among Stirling permutations of order n.
1

%I #21 Jun 14 2023 12:12:07

%S 1,2,3,6,12,22,44,88,169,338,676,1322,2644,5288,10433,20866,41732,

%T 82736,165472,330944,658012,1316024,2632048,5242778,10485556,20971112,

%U 41822049,83644098,167288196,333885702,667771404,1335542808,2667053601,5334107202,10668214404

%N Number of admissible mesa sets among Stirling permutations of order n.

%D Nicolle González, Pamela E. Harris, Gordon Rojas Kirby, Mariana Smit Vega Garcia, and Bridget Eileen Tenner, "Mesas of Stirling permutations," preprint.

%H Alois P. Heinz, <a href="/A363582/b363582.txt">Table of n, a(n) for n = 1..3323</a>

%F Let n = 3*k+r, where r is in {0,1,2}, and let C_(x,y) be the rational Catalan numbers (A328901/A328902). Then a(n) = 2^(n-1) - Sum_{i=0..k-1} 2^(3*i+r)*C_(2*(k-i)-1,k-i).

%e For n = 4, the a(4) = 6 admissible pinnacle sets for Stirling permutations of order 4 are {}, {2}, {3}, {4}, {2,4}, and {3,4}.

%p a:= proc(n) option remember; `if`(n<4, n, (2*n*(2*n-3)*

%p a(n-1)+27*(n-4)*(n-2)*(a(n-3)/2-a(n-4)))/(n*(2*n-3)))

%p end:

%p seq(a(n), n=1..45); # _Alois P. Heinz_, Jun 13 2023

%Y Cf. A289871, A359066, A359067, A328901, A328902.

%K nonn

%O 1,2

%A _Bridget Tenner_, Jun 10 2023

%E More terms from _Alois P. Heinz_, Jun 13 2023