login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363585
Least prime p such that p^n + 6 is the product of n distinct primes.
0
5, 2, 23, 127, 71, 353, 1279, 3851, 3049, 18913, 47129, 352073, 696809
OFFSET
1,1
COMMENTS
Corresponding values of p^n + 6 are 11, 10, 12173, 260144647, 1804229357, 1934854145598535, 5598785270206921122565, ...
Upper bounds for the next terms are a(12) <= 352073, a(13) <= 696809, a(14) <= 1496423. - Hugo Pfoertner, Jun 11 2023
EXAMPLE
a(1) = 5; 5^1 + 6 = 11.
a(2) = 2; 2^2 + 6 = 2 * 5.
a(3) = 23; 23^3 + 6 = 7 * 37 * 47.
a(4) = 127; 127^4 + 6 = 7 * 131 * 367 * 773.
MATHEMATICA
Table[b=6; y[a_]:=FactorInteger[Prime[a]^n+b]; k=1; Monitor[Parallelize[While[True, If[And[Length[y[k]]==n, Count[Flatten[y[k]], 1]==n], Break[]]; k++]; k], k]//Prime, {n, 1, 10}]
PROG
(PARI) a(n) = forprime(p=2, , my(f=factor(p^n + 6)); if (issquarefree(f) && (omega(f) == n), return(p)));
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
EXTENSIONS
a(11) from Hugo Pfoertner, Jun 11 2023
a(12) from J.W.L. (Jan) Eerland, Jan 07 2024
a(13) from Hugo Pfoertner, confirmed by Daniel Suteu, Feb 10 2024
STATUS
approved