login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A289920 p-INVERT of (1,0,0,1,0,0,1,0,0,...), where p(S) = 1 - S - S^2. 1
1, 2, 3, 6, 12, 22, 42, 80, 151, 287, 544, 1031, 1956, 3708, 7031, 13333, 25280, 47936, 90895, 172350, 326806, 619677, 1175008, 2228011, 4224672, 8010672, 15189552, 28801880, 54613096, 103555397, 196358029, 372327066, 705993241, 1338679088, 2538355336 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).

See A291728 for a guide to related sequences.

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1, 1, 2, -1, 0, -1)

FORMULA

G.f.: -((-1 - x + x^3)/(1 - x - x^2 - 2 x^3 + x^4 + x^6)).

a(n) = a(n-1) + a(n-2) + 2*a(n-3) - a(n-4) - a(n-6) for n >= 7.

MATHEMATICA

z = 60; s = x/(x - x^3); p = 1 - s - s^2;

Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A079978  *)

Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A289920 *)

CROSSREFS

Cf. A079978, A289918.

Sequence in context: A018178 A112575 A018079 * A060985 A068012 A261930

Adjacent sequences:  A289917 A289918 A289919 * A289921 A289922 A289923

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Sep 14 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 22:33 EST 2022. Contains 350410 sequences. (Running on oeis4.)