login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162164
Primes p such that p-1 and p+1 can be written as a sum of 2 distinct nonzero squares.
1
179, 233, 467, 521, 739, 809, 1097, 1171, 1601, 1619, 1801, 1873, 1907, 2467, 3203, 3329, 3331, 3491, 3923, 4051, 4177, 4211, 4931, 5507, 5651, 6067, 6121, 6353, 6569, 6659, 7219, 8081, 8243, 8297, 8353, 8819, 9091, 9161, 9377, 10243, 10531, 10657
OFFSET
1,1
FORMULA
{p=A000040(i): p-1 in A004431 and p+1 in A004431}. - R. J. Mathar, Jul 02 2009
EXAMPLE
p=179 is a term because 179 - 1 = 3^2 + 13^2 and 179 + 1 = 6^2 + 12^2.
MAPLE
isA004431 := proc(n) local x, y ; for x from 1 do if x^2 > n then RETURN(false); fi; y := n-x^2 ; if y> 0 and issqr(y ) then y := sqrt(y) ; if y <> x then RETURN(true) ; fi; fi; od: end:
for n from 1 to 2000 do p := ithprime(n) ; if isA004431(p-1) and isA004431(p+1) then printf("%d, ", p) ; fi; od: # R. J. Mathar, Jul 02 2009
MATHEMATICA
f[n_]:=Module[{k=1}, While[(n-k^2)^(1/2)!=IntegerPart[(n-k^2)^(1/2)], k++; If[2*k^2>=n, k=0; Break[]]]; k]; lst={}; Do[p=Prime[n]; If[f[p-1]>0&&f[p+1]> 0, AppendTo[lst, p]], {n, 4*6!}]; lst
CROSSREFS
Sequence in context: A108384 A217550 A226928 * A238893 A230809 A335067
KEYWORD
nonn
AUTHOR
EXTENSIONS
Definition corrected, R. J. Mathar, Jul 02 2009
STATUS
approved