Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Jan 10 2014 17:04:48
%S 1,1,3,13,73,561,5251,57583,739089,10794241,176570371,3209512791,
%T 64116701353,1396247370961,32941566738627,836962322583871,
%U 22785381648804001,661810614930630273,20428823103775758595
%N E.g.f. satisfies: A(x) = exp(x + x^2 + x^3*A(x)).
%F a(n) = n!*Sum_{k=0..n} Sum(j=0..k} (j+1)^(n-k-1)/(n-k)! * C(n-k,k-j)*C(k-j,j).
%F Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then
%F a(n) = n!*Sum_{k=0..n} Sum(j=0..k} m*(j+m)^(n-k-1)/(n-k)! * C(n-k,k-j)*C(k-j,j).
%F E.g.f.: A(x) = exp(x*F(x)) where F(x) is the e.g.f. of A162697. [From _Paul D. Hanna_, Jul 18 2009]
%F E.g.f.: -LambertW(-exp(x*(1+x))*x^3)/x^3. - _Vaclav Kotesovec_, Jan 10 2014
%F a(n) ~ sqrt(2*r^2+r+3) * n^(n-1) / (exp(n) * r^(n+3)), where r = 0.542223654754281322169639... is the root of the equation exp(r^2+r+1)*r^3 = 1. - _Vaclav Kotesovec_, Jan 10 2014
%e E.g.f.: A(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 73*x^4/4! + 561*x^5/5! +...
%t CoefficientList[Series[-ProductLog[-E^(x*(1+x))*x^3]/x^3,{x,0,20}],x] * Range[0,20]! (* _Vaclav Kotesovec_, Jan 10 2014 *)
%o (PARI) {a(n,m=1)=n!*sum(k=0,n,sum(j=0,k,m*(j+m)^(n-k-1)/(n-k)!*binomial(n-k,k-j)*binomial(k-j,j)))}
%Y Cf. A162697. [From _Paul D. Hanna_, Jul 18 2009]
%K nonn
%O 0,3
%A _Paul D. Hanna_, Jun 26 2009