OFFSET
0,4
COMMENTS
Column 0 is signed A001515 (Bessel polynomial). Column 1 is A107103. Row sums are zeros for n>0. Absolute row sums form A107104, which equals 2*A043301(n-1) for n>0.
The row polynomials p_n(x) of this entry are (-1)^n B_n(1-x), where B_n(x) are the modified Carlitz-Bessel polynomials of A001497, e,g, (-1)^2 B_2(1-x) = (1-x) + (1-x)^2 = 2 - 3 x + x^2 = p_2(x). - Tom Copeland, Oct 10 2016
FORMULA
E.g.f.: exp((1-y)*(1-sqrt(1+2*x))). [Vladeta Jovovic, Dec 13 2008]
EXAMPLE
Triangle begins:
1;
-1,1;
2,-3,1;
-7,12,-6,1;
37,-67,39,-10,1;
-266,495,-310,95,-15,1;
2431,-4596,3000,-1010,195,-21,1;
-27007,51583,-34566,12320,-2660,357,-28,1; ...
and is the matrix inverse of A100862:
1;
1,1;
1,3,1;
1,6,6,1;
1,10,21,10,1;
1,15,55,55,15,1; ...
PROG
(PARI) {T(n, k)=local(X=x+x*O(x^n), Y=y+y*O(y^n)); (matrix(n+1, n+1, m, j, if(m>=j, (m-1)!*polcoeff(polcoeff(exp(X+Y*X^2/2+X*Y), m-1, x), j-1, y)))^-1)[n+1, k+1]}
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, May 21 2005
STATUS
approved