login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330928
Starts of runs of 5 consecutive Niven (or harshad) numbers (A005349).
11
1, 2, 3, 4, 5, 6, 131052, 491424, 1275140, 1310412, 1474224, 1614623, 1912700, 2031132, 2142014, 2457024, 2550260, 3229223, 3931224, 4422624, 4914024, 5405424, 5654912, 5920222, 7013180, 7125325, 7371024, 8073023, 8347710, 9424832, 10000095, 10000096, 10000097
OFFSET
1,2
COMMENTS
Cooper and Kennedy proved that there are infinitely many runs of 20 consecutive Niven numbers. Therefore this sequence is infinite.
REFERENCES
Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 36, entry 110.
LINKS
Curtis Cooper and Robert E. Kennedy, On consecutive Niven numbers, Fibonacci Quarterly, Vol. 21, No. 2 (1993), pp. 146-151.
Helen G. Grundman, Sequences of consecutive Niven numbers, Fibonacci Quarterly, Vol. 32, No. 2 (1994), pp. 174-175.
Wikipedia, Harshad number.
Brad Wilson, Construction of 2n consecutive n-Niven numbers, Fibonacci Quarterly, Vol. 35, No. 2 (1997), pp. 122-128.
FORMULA
This A330928 = { A005349(k) | A005349(k+4) = A005349(k)+4 }. - M. F. Hasler, Jan 03 2022
EXAMPLE
131052 is a term since 131052 is divisible by 1 + 3 + 1 + 0 + 5 + 2 = 12, 131053 is divisible by 13, 131054 is divisible by 14, 131055 is divisible by 15, and 131056 is divisible by 16.
MATHEMATICA
nivenQ[n_] := Divisible[n, Total @ IntegerDigits[n]]; niv = nivenQ /@ Range[5]; seq = {}; Do[niv = Join[Rest[niv], {nivenQ[k]}]; If[And @@ niv, AppendTo[seq, k - 4]], {k, 5, 10^7}]; seq
SequencePosition[Table[If[Divisible[n, Total[IntegerDigits[n]]], 1, 0], {n, 10^7+200}], {1, 1, 1, 1, 1}][[;; , 1]] (* Harvey P. Dale, Dec 24 2023 *)
PROG
(Magma) f:=func<n|n mod &+Intseq(n) eq 0>; a:=[]; for k in [1..11000000] do if forall{m:m in [0..4]|f(k+m)} then Append(~a, k); end if; end for; a; // Marius A. Burtea, Jan 03 2020
(PARI) {first( N=50, LEN=5, L=List())= for(n=1, oo, n+=LEN; for(m=1, LEN, n--%sumdigits(n) && next(2)); listput(L, n); N--|| break); L} \\ M. F. Hasler, Jan 03 2022
CROSSREFS
Cf. A005349, A060159; A330927, A154701, A141769, A330929, A330930 (same for 2, 3, 4, 6, 7 consecutive harshad numbers).
Sequence in context: A004901 A004912 A292125 * A164699 A228050 A331561
KEYWORD
nonn,base,changed
AUTHOR
Amiram Eldar, Jan 03 2020
STATUS
approved