login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Starts of runs of 5 consecutive Niven (or harshad) numbers (A005349).
11

%I #27 Jan 05 2025 19:51:41

%S 1,2,3,4,5,6,131052,491424,1275140,1310412,1474224,1614623,1912700,

%T 2031132,2142014,2457024,2550260,3229223,3931224,4422624,4914024,

%U 5405424,5654912,5920222,7013180,7125325,7371024,8073023,8347710,9424832,10000095,10000096,10000097

%N Starts of runs of 5 consecutive Niven (or harshad) numbers (A005349).

%C Cooper and Kennedy proved that there are infinitely many runs of 20 consecutive Niven numbers. Therefore this sequence is infinite.

%D Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 36, entry 110.

%H Amiram Eldar, <a href="/A330928/b330928.txt">Table of n, a(n) for n = 1..10000</a>

%H Curtis Cooper and Robert E. Kennedy, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/31-2/cooper.pdf">On consecutive Niven numbers</a>, Fibonacci Quarterly, Vol. 21, No. 2 (1993), pp. 146-151.

%H Helen G. Grundman, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/32-2/grundman.pdf">Sequences of consecutive Niven numbers</a>, Fibonacci Quarterly, Vol. 32, No. 2 (1994), pp. 174-175.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Harshad_number">Harshad number</a>.

%H Brad Wilson, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/35-2/wilson.pdf">Construction of 2n consecutive n-Niven numbers</a>, Fibonacci Quarterly, Vol. 35, No. 2 (1997), pp. 122-128.

%F This A330928 = { A005349(k) | A005349(k+4) = A005349(k)+4 }. - _M. F. Hasler_, Jan 03 2022

%e 131052 is a term since 131052 is divisible by 1 + 3 + 1 + 0 + 5 + 2 = 12, 131053 is divisible by 13, 131054 is divisible by 14, 131055 is divisible by 15, and 131056 is divisible by 16.

%t nivenQ[n_] := Divisible[n, Total @ IntegerDigits[n]]; niv = nivenQ /@ Range[5]; seq = {}; Do[niv = Join[Rest[niv], {nivenQ[k]}]; If[And @@ niv, AppendTo[seq, k - 4]], {k, 5, 10^7}]; seq

%t SequencePosition[Table[If[Divisible[n,Total[IntegerDigits[n]]],1,0],{n,10^7+200}],{1,1,1,1,1}][[;;,1]] (* _Harvey P. Dale_, Dec 24 2023 *)

%o (Magma) f:=func<n|n mod &+Intseq(n) eq 0>; a:=[]; for k in [1..11000000] do if forall{m:m in [0..4]|f(k+m)} then Append(~a,k); end if; end for; a; // _Marius A. Burtea_, Jan 03 2020

%o (PARI) {first( N=50, LEN=5, L=List())= for(n=1,oo, n+=LEN; for(m=1,LEN, n--%sumdigits(n) && next(2)); listput(L,n); N--|| break);L} \\ _M. F. Hasler_, Jan 03 2022

%Y Cf. A005349, A060159; A330927, A154701, A141769, A330929, A330930 (same for 2, 3, 4, 6, 7 consecutive harshad numbers).

%K nonn,base,changed

%O 1,2

%A _Amiram Eldar_, Jan 03 2020