login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072079
Sum of 3-smooth divisors of n.
5
1, 3, 4, 7, 1, 12, 1, 15, 13, 3, 1, 28, 1, 3, 4, 31, 1, 39, 1, 7, 4, 3, 1, 60, 1, 3, 40, 7, 1, 12, 1, 63, 4, 3, 1, 91, 1, 3, 4, 15, 1, 12, 1, 7, 13, 3, 1, 124, 1, 3, 4, 7, 1, 120, 1, 15, 4, 3, 1, 28, 1, 3, 13, 127, 1, 12, 1, 7, 4, 3, 1, 195, 1, 3, 4, 7, 1, 12, 1, 31, 121
OFFSET
1,2
LINKS
FORMULA
a(n) = (2^(A007814(n)+1)-1)*(3^(A007949(n)+1)-1)/2.
a(n) = A000203(A065331(n)).
Multiplicative with a(2^e) = 2^(e+1)-1, a(3^e) = (3^(e+1)-1)/2, a(p^e) = 1, p>3. Christian G. Bower, May 20 2005
From Amiram Eldar, Dec 01 2022: (Start)
Dirichlet g.f.: zeta(s)*(2^s/(2^s-2))*(3^s/(3^s-3)).
Sum_{k=1..n} a(k) ~ c_1 * (n * log(n)^2 + c_2 * n * log(n) + c_3 * n), where c_1 = 1/(2*log(2)*log(3)) = 0.656598..., c_2 = (2*gamma - 2 + log(6)) = 0.9461907..., and c_3 = (log(6)^2 + log(2)*log(3))/6 - (log(6)-2)*(1-gamma) - 2*gamma_1 = 0.895656..., gamma is Euler's constant (A001620), and gamma_1 is the 1st Stieltjes constant (A082633). (End)
MATHEMATICA
f[p_, e_] := If[p > 3, 1, (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
PROG
(PARI) a(n) = (2^(valuation(n, 2)+1)-1)*(3^(valuation(n, 3)+1)-1)/2; \\ Amiram Eldar, Dec 01 2022
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Reinhard Zumkeller, Jun 13 2002
STATUS
approved