login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355584
a(n) is the sum of the 5-smooth divisors of n.
5
1, 3, 4, 7, 6, 12, 1, 15, 13, 18, 1, 28, 1, 3, 24, 31, 1, 39, 1, 42, 4, 3, 1, 60, 31, 3, 40, 7, 1, 72, 1, 63, 4, 3, 6, 91, 1, 3, 4, 90, 1, 12, 1, 7, 78, 3, 1, 124, 1, 93, 4, 7, 1, 120, 6, 15, 4, 3, 1, 168, 1, 3, 13, 127, 6, 12, 1, 7, 4, 18, 1, 195, 1, 3, 124, 7
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if p <= 5, and 1 otherwise.
a(n) = (2^(A007814(n)+1)-1)*(3^(A007949(n)+1)-1)*(5^(A112765(n)+1)-1)/8.
a(n) = A000203(A355582(n)).
a(n) <= A000203(n), with equality if and only if n is in A051037.
Dirichlet g.f.: zeta(s)*(2^s/(2^s-2))*(3^s/(3^s-3))*(5^s/(5^s-5)). - Amiram Eldar, Dec 25 2022
MATHEMATICA
a[n_] := (Times @@ ({2, 3, 5}^(IntegerExponent[n, {2, 3, 5}] + 1) - 1))/8; Array[a, 100]
PROG
(PARI) a(n) = (2^(valuation(n, 2) + 1) - 1) * (3^(valuation(n, 3) + 1) - 1) * (5^(valuation(n, 5) + 1) - 1) / 8;
(Python)
from sympy import multiplicity as v
def a(n): return (2**(v(2, n)+1)-1) * (3**(v(3, n)+1)-1) * (5**(v(5, n)+1)-1) // 8
print([a(n) for n in range(1, 77)]) # Michael S. Branicky, Jul 08 2022
CROSSREFS
Sum of the p-smooth divisors of n: A038712 (2), A072079 (3), this sequence (5).
Sequence in context: A279388 A292288 A347273 * A113957 A366148 A367171
KEYWORD
nonn,mult,easy
AUTHOR
Amiram Eldar, Jul 08 2022
STATUS
approved