login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355587
T(j,k) are the numerators u in the representation R = s/t + (2*sqrt(3)/Pi)*u/v of the resistance between two nodes separated by the distance (j,k) in an infinite triangular lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= floor(j/2) is an irregular triangle read by rows.
8
0, 0, -2, 1, -24, 5, -280, 64, -14, -3400, 808, -111, -212538, 51929, -9054, 1989, -2708944, 673429, -127303, 15576, -244962336, 61623224, -12361214, 1891328, -405592, -3195918288, 810930216, -169618717, 28113999, -3217136, -42013225014, 2146081719, -2315951182, 81986531, -57942922, 12257507
OFFSET
0,3
COMMENTS
See A355585 for more information.
EXAMPLE
The triangle begins:
0;
0;
-2, 1;
-24, 5;
-280, 64, -14;
-3400, 808, -111;
-212538, 51929, -9054, 1989;
-2708944, 673429, -127303, 15576;
-244962336, 61623224, -12361214, 1891328, -405592;
-3195918288, 810930216, -169618717, 28113999, -3217136;
PROG
(PARI) Rtri(n, p) = {my(alphat(beta)=acosh(2/cos(beta)-cos(beta))); intnum (beta=0, Pi/2, (1 - exp (-abs(n-p) * alphat(beta))*cos((n+p)*beta)) / (cos(beta)*sinh(alphat(beta)))) / Pi};
jk(j, k) = {my(jj=j, kk=k); if(k<1, jj=j-k+1; kk=2-k); my(km=(jj+1)/2); if(kk>km, kk=2*km-kk); [jj, kk]};
D(n) = subst(pollegendre(n), 'x, 7);
uv(k) = (Rtri(k, 0) - sum(j=0, k-1, D(j))/3) / (2*sqrt(3)/Pi);
poddpri(primax) = {my(pp=1, p=2); while (p<=primax, p=nextprime(p+1); pp*=p); pp};
UV(nend) = { my(nmax=nend+1, M=matrix(nmax, (nmax+1)\2)); for (n=3, nmax, M[n, 1] = bestappr(uv(n-1), poddpri(n-1))); for (n=3, nmax, M[n, 2]=(1/2)*(6*M[n-1, 1] - 2*M[jk(n-1, 2)[1], jk(n-1, 2)[2]] - M[n-2, 1] - M[n, 1])); for (n=5, nmax, for (m=3, (n+1)\2, M[n, m] = 6*M[jk(n-1, m-1)[1], jk(n-1, m-1)[2]] - M[jk(n-1, m)[1], jk(n-1, m)[2]] - M[jk(n-2, m-1)[1], jk(n-2, m-1)[2]] - M[jk(n-2, m-2)[1], jk(n-2, m-2)[2]] - M[jk(n-1, m-2)[1], jk(n-1, m-2)[2]] - M[jk(n, m-1)[1], jk(n, m-1)[2]] )); M};
UV(11)
CROSSREFS
A355588 are the corresponding denominators v.
A355585 and A355586 are s and t.
Sequence in context: A261407 A037943 A073876 * A276399 A119828 A328826
KEYWORD
tabf,frac,sign
AUTHOR
Hugo Pfoertner, Jul 09 2022
STATUS
approved