login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A355585 T(j,k) are the numerators s in the representation R = s/t + (2*sqrt(3)/Pi)*u/v of the resistance between two nodes separated by the distance (j,k) in an infinite triangular lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= floor(j/2) is an irregular triangle read by rows. 12
0, 1, 8, -2, 27, -5, 928, -70, 16, 11249, -2671, 123, 46872, -34354, 5992, -438, 1792225, -445535, 28075, -10303, 23152256, -5824226, 1168304, -178754, 38336, 100685835, -25547957, 5343755, -885717, 101355, 3970817992, -338056246, 72962904, -12914726, 1825464, -386166 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
The distance vector (j,k) is defined in an oblique coordinate system with an angle of 120 degrees between the axes, see e.g. A307012.
Atkinson and Steenwijk (1999) (see links in A211074) provided a generalization of the method used to calculate the resistance between two arbitrary nodes in an infinite square lattice of one-ohm resistors to infinite triangular lattices. Similar to the square lattice, the integral describing the resistance distance between nodes can exactly be represented by an expression of the form given in the name of this sequence with integer coefficients. Atkinson and Steenwijk, page 489, provided results for j <= 3 found by evaluation of the integral (17) (given below) and application of Mathematica's "Simplify" function.
R(j,k) = (1/Pi) * Integral_{y=0..Pi/2} (1 - exp(-|j-k|*x)*cos((j+k)*y)) / (sinh(x)*cos(y)) dy, with x = arccosh(2/cos(y)-cos(y)).
It would be useful to know whether, since the publication cited, a recurrence analogous to that known for the square lattice (used in A355565) for determining the coefficients has also been found for the triangular lattice.
The results in this sequence were found by systematic parameter variation of u and v and continued fraction expansion of the difference from the exact value of the integral for the resistance distance to determine s/t.
REFERENCES
See A211074 for more references and links (with alternatives).
LINKS
D. Atkinson and F. J. van Steenwijk, Infinite resistive lattices, Am. J. Phys. 67 (1999), 486-492.
Hugo Pfoertner, PARI program for inverse problem, (2022). Finds the grid point [x,y] that leads to the best approximation of a given resistance distance R (ohms) between [0,0] and [x,y].
FORMULA
T(n,0)/A355586(n,0) = T(n-1,0)/A355586(n-1,0) + A084768(n-1)/3 for n>=1 (conjectured).
EXAMPLE
The triangle begins:
0;
1;
8, -2;
27, -5;
928, -70, 16;
11249, -2671, 123;
46872, -34354, 5992, -438;
1792225, -445535, 28075, -10303;
23152256, -5824226, 1168304, -178754, 38336;
100685835, -25547957, 5343755, -885717, 101355;
. The combined triangles used to calculate the resistances are:
\ j 0 | 1 |
k\---------- s/t ----------- u/v -|----------- s/t ----------- u/v -|
0| 0/1 0/ 1 | . . |
1| 1/3 0/ 1 | . . |
2| 8/3 -2/ 1 | -2/3 1/ 1 |
3| 27/1 -24/ 1 | -5/1 5/ 1 |
4| 928/3 -280/ 1 | -70/1 64/ 1 |
5| 11249/3 -3400/ 1 | -2671/3 808/ 1 |
6| 46872/1 -212538/ 5 | -34354/3 51929/ 5 |
7| 1792225/3 -2708944/ 5 | -445535/3 673429/ 5 |
8| 23152256/3 -244962336/35 | -5824226/3 61623224/35 |
9| 100685835/1 -3195918288/35 | -25547957/1 810930216/35 |
10| 3970817992/3 -42013225014/35 | -338056246/1 2146081719/ 7 |
11| 52514317745/3 -111125508824/ 7 | -13481564911/3 142641647567/35 |
.
continued
\ j 2 | 3 |
k\-------- s/t ---------- u/v -|--------- s/t -------- u/v -|
4| 16/1 -14/ 1 | . . |
5| 123/1 -111/ 1 | . . |
6| 5992/3 -9054/ 5 | -438/1 1989/5 |
7| 28075/1 -127303/ 5 | -10303/3 15576/5 |
8| 1168304/3 -12361214/35 | -178754/3 1891328/35 |
9| 5343755/1 -169618717/35 | -885717/1 28113999/35 |
10| 72962904/1 -2315951182/35 | -12914726/1 81986531/ 7 |
11| 993810715/1 -31545031729/35 | -184858117/1 5867671888/35 |
.
continued
\ j 4 | 5 |
k\------- s/t -------- u/v -|------- s/t ------- u/v -|
8| 38336/3 -405592/35 | . . |
9| 101355/1 -3217136/35 | . . |
10| 1825464/1 -57942922/35 | -386166/1 12257507/35 |
11| 28123355/1 -892677136/35 | -3085317/1 97932579/35 |
.
Using the terms for (j,k) = (10,5) with {s, t, u, v} = {-386166, 1, 12257507, 35} the resistance is R = T(10,5)/A355586(10,5) + (2*sqrt(3)/Pi) * A355587(10,5)/A355588(10,5) = -386166/1 + (2*sqrt(3)/Pi)*12257507/35 = 0.731139136228538824636... . This equals the integral for the resistance distance R(j,k) after substitution of j=10 and k=5.
PROG
(PARI) Rtri(n, p)={my(alphat(beta)=acosh(2/cos(beta)-cos(beta))); intnum (beta=0, Pi/2, (1 - exp (-abs(n-p) * alphat(beta))*cos((n+p)*beta)) / (cos(beta)*sinh(alphat(beta)))) / Pi};
searchr (target, maxn=1000000, maxd=10, maxrat=1000, minn=0, mind=1) = {my (Rcons=2*sqrt(3)/Pi, delta=oo); for (d=mind, maxd, my(PP=Rcons/d); for (nn=minn, maxn, foreach ([-nn, nn], n, my (P=PP*n, T=target-P, Q = bestappr(T, maxrat), D=abs(target-P-Q)); if(D<delta, delta=D; if (delta < 10^(-getlocalprec()*5\6), return ([numerator(Q), denominator(Q), n, d]) )))))};
\\ j=6 takes a while; prints [j, k][s, t, u, v]
for (j=0, 6, for (k=0, j\2, my(R=Rtri(j, k)); S=searchr(R, 500000); print([j, k], S)));
(PARI) \\ Alternative method using a recurrence; calculates triangle of s/t
jk(j, k) = {my(jj=j, kk=k); if(k<1, jj=j-k+1; kk=2-k); my(km=(jj+1)/2); if(kk>km, kk=2*km-kk); [jj, kk]};
D(n) = subst(pollegendre(n), 'x, 7);
ST(nend) = {my(nmax=nend+1, N=matrix(nmax, (nmax+1)\2)); for (n=2, nmax, N[n, 1]=(1/3) * sum(k=0, n-2, D(k))); for (n=3, nmax, N[n, 2] = (1/2)*(6*N[n-1, 1] - 2*N[jk(n-1, 2)[1], jk(n-1, 2)[2]] - N[n-2, 1] - N[n, 1])); for (n=5, nmax, for (m=3, (n+1)\2, N[n, m] = 6*N[jk(n-1, m-1)[1], jk(n-1, m-1)[2]] - N[jk(n-1, m)[1], jk(n-1, m)[2]] - N[jk(n-2, m-1)[1], jk(n-2, m-1)[2]] - N[jk(n-2, m-2)[1], jk(n-2, m-2)[2]] - N[jk(n-1, m-2)[1], jk(n-1, m-2)[2]] - N[jk(n, m-1)[1], jk(n, m-1)[2]] )); N};
ST(11)
CROSSREFS
A355586 are the corresponding denominators t.
A355587 and A355588 are u and v.
Cf. A307012 (discussion of oblique coordinate system).
Cf. A084768 (when divided by 3 apparently gives the difference between successive values of s/t in column 0).
Cf. A355565, A355566, A355567 (similar problem for the square lattice).
Sequence in context: A248297 A340008 A006708 * A273671 A303635 A179315
KEYWORD
tabf,frac,sign
AUTHOR
Hugo Pfoertner, Jul 09 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 01:06 EDT 2024. Contains 371964 sequences. (Running on oeis4.)