Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Dec 25 2022 02:11:17
%S 1,3,4,7,6,12,1,15,13,18,1,28,1,3,24,31,1,39,1,42,4,3,1,60,31,3,40,7,
%T 1,72,1,63,4,3,6,91,1,3,4,90,1,12,1,7,78,3,1,124,1,93,4,7,1,120,6,15,
%U 4,3,1,168,1,3,13,127,6,12,1,7,4,18,1,195,1,3,124,7
%N a(n) is the sum of the 5-smooth divisors of n.
%H Amiram Eldar, <a href="/A355584/b355584.txt">Table of n, a(n) for n = 1..10000</a>
%F Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if p <= 5, and 1 otherwise.
%F a(n) = (2^(A007814(n)+1)-1)*(3^(A007949(n)+1)-1)*(5^(A112765(n)+1)-1)/8.
%F a(n) = A000203(A355582(n)).
%F a(n) <= A000203(n), with equality if and only if n is in A051037.
%F Dirichlet g.f.: zeta(s)*(2^s/(2^s-2))*(3^s/(3^s-3))*(5^s/(5^s-5)). - _Amiram Eldar_, Dec 25 2022
%t a[n_] := (Times @@ ({2, 3, 5}^(IntegerExponent[n, {2, 3, 5}] + 1) - 1))/8; Array[a, 100]
%o (PARI) a(n) = (2^(valuation(n, 2) + 1) - 1) * (3^(valuation(n, 3) + 1) - 1) * (5^(valuation(n, 5) + 1) - 1) / 8;
%o (Python)
%o from sympy import multiplicity as v
%o def a(n): return (2**(v(2, n)+1)-1) * (3**(v(3, n)+1)-1) * (5**(v(5, n)+1)-1) // 8
%o print([a(n) for n in range(1, 77)]) # _Michael S. Branicky_, Jul 08 2022
%Y Sum of the p-smooth divisors of n: A038712 (2), A072079 (3), this sequence (5).
%Y Cf. A000203, A007814, A007949, A051037, A112765, A355582, A355583.
%K nonn,mult,easy
%O 1,2
%A _Amiram Eldar_, Jul 08 2022