login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355581
Exponentially-odd 3-smooth numbers: number of the form 2^i * 3^j where i and j are either 0 or odd.
2
1, 2, 3, 6, 8, 24, 27, 32, 54, 96, 128, 216, 243, 384, 486, 512, 864, 1536, 1944, 2048, 2187, 3456, 4374, 6144, 7776, 8192, 13824, 17496, 19683, 24576, 31104, 32768, 39366, 55296, 69984, 98304, 124416, 131072, 157464, 177147, 221184, 279936, 354294, 393216, 497664
OFFSET
1,2
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = 55/24.
EXAMPLE
6 is a term since 6 = 2^1 * 3^1 and the exponents of 2 and 3 are both odd: 1.
24 is a term since 24 = 2^3 * 3^1 and the exponents of 2 and 3 are both odd: 3 and 1, respectively.
MATHEMATICA
q[n_] := Module[{e = IntegerExponent[n, {2, 3}]}, (e[[1]] == 0 || OddQ[e[[1]]]) && (e[[2]] == 0 || OddQ[e[[2]]]) && Times@@({2, 3}^e) == n]; Select[Range[500000], q]
PROG
(PARI) is(n) = {my(e2 = valuation(n, 2), e3 = valuation(n, 3)); (e2 == 0 || e2%2) && (e3 == 0 || e3%2) && n == 2^e2 * 3^e3};
(Python)
from itertools import count, takewhile
def aupto(lim):
pows2 = list(takewhile(lambda x: x<lim, (2**i for i in count(1, 2))))
pows3 = list(takewhile(lambda x: x<lim, (3**i for i in count(1, 2))))
return sorted(c*d for c in [1]+pows2 for d in [1]+pows3 if c*d <= lim)
print(aupto(10**6)) # Michael S. Branicky, Jul 08 2022
CROSSREFS
Intersection of A003586 and A268335.
Subsequences: A002023, A013711, A092810.
Cf. A355580.
Sequence in context: A095895 A051934 A153915 * A093705 A281645 A351853
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Jul 08 2022
STATUS
approved