login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355579
Numbers k such that A072079(k)/k sets a new record.
2
1, 2, 4, 6, 12, 24, 36, 48, 72, 144, 288, 432, 864, 1728, 2592, 3456, 5184, 10368, 20736, 31104, 41472, 62208, 124416, 248832, 373248, 746496, 1492992, 2239488, 2985984, 4478976, 8957952, 17915904, 26873856, 53747712, 107495424, 161243136, 214990848, 322486272
OFFSET
1,2
COMMENTS
Numbers m such that A072079(m)/m > A072079(k)/k for all k < m.
All the terms are 3-smooth numbers (A003586).
Equivalently, 3-smooth numbers k such that A000203(k)/k sets a new record.
Analogous to superabundant numbers (A004394) with 3-smooth numbers only.
LINKS
FORMULA
Limit_{n->oo} A072079(a(n))/a(n) = lim_{n->oo} A000203(a(n))/a(n) = 3.
EXAMPLE
The numbers of 3-smooth divisors of the first 6 positive integers are 1, 3, 4, 7, 1 and 12. The corresponding values of A072079(k)/k are 1, 3/2, 4/3, 7/4, 1/5 and 2. The record values, 1, 3/2, 7/4 and 2, occur at 1, 2, 4 and 6, the first 4 terms of this sequence.
MATHEMATICA
s[n_] := Module[{e = IntegerExponent[n, {2, 3}], p}, p = {2, 3}^e; If[Times @@ p == n, (2^(e[[1]] + 1) - 1)*(3^(e[[2]] + 1) - 1)/(2*n), 0]]; sm = 0; seq = {}; Do[sn = s[n]; If[sn > sm, sm = sn; AppendTo[seq, n]], {n, 1, 10^6}]; seq
PROG
(PARI) lista(nmax) = {my(list = List(), rmax = 0, e2, e3, r); for(n = 1, nmax, e2 = valuation(n, 2); e3 = valuation(n, 3); r = if(2^e2 * 3^e3 == n, (2^(e2 + 1) - 1)*(3^(e3 + 1) - 1)/(2*n), 0); if(r > rmax, rmax = r; listput(list, n))); Vec(list)};
(Python)
from fractions import Fraction
from sympy import multiplicity as v
from itertools import count, takewhile
def f(n): return Fraction((2**(v(2, n)+1)-1) * (3**(v(3, n)+1)-1)//2, n)
def smooth3(lim):
pows2 = list(takewhile(lambda x: x<lim, (2**i for i in count(0))))
pows3 = list(takewhile(lambda x: x<lim, (3**i for i in count(0))))
return sorted(c*d for c in pows2 for d in pows3 if c*d <= lim)
def aupto(lim):
data, records, record = smooth3(lim), [], -1
for argv, v in zip(data, map(f, data)):
if v > record: record = v; records.append(argv)
return records
print(aupto(10**9)) # Michael S. Branicky, Jul 08 2022
CROSSREFS
Subsequence of A003586 and A355578.
Sequence in context: A141320 A307122 A309015 * A357173 A349424 A134865
KEYWORD
nonn
AUTHOR
Amiram Eldar, Jul 08 2022
STATUS
approved