login
A357173
Positions of records in A357171, i.e., integers whose number of divisors whose decimal digits are in strictly increasing order sets a new record.
3
1, 2, 4, 6, 12, 24, 36, 48, 72, 144, 336, 468, 504, 936, 1008, 1512, 2520, 3024, 5040, 6552, 7560, 13104, 19656, 39312, 78624, 98280, 196560, 393120, 668304, 1244880, 1670760, 1867320, 3341520, 3734640, 7469280, 22407840, 26142480, 31744440, 52284960, 63488880
OFFSET
1,2
COMMENTS
As A009993 is finite, this sequence is necessarily finite.
Corresponding records are 1, 2, 3, 4, 6, 8, 9, 10, 11, ...
EXAMPLE
a(6) = 24 is in the sequence because A357171(24) = 8 is larger than any earlier value in A357171.
MATHEMATICA
s[n_] := DivisorSum[n, 1 &, Less @@ IntegerDigits[#] &]; seq = {}; sm = 0; Do[If[(sn = s[n]) > sm, sm = sn; AppendTo[seq, n]], {n, 1, 10^4}]; seq (* Amiram Eldar, Sep 17 2022 *)
PROG
(PARI) isok(d) = Set(d=digits(d)) == d; \\ A009993
f(n) = sumdiv(n, d, isok(d)); \\ A357171
lista(nn) = my(r=0, list = List()); for (k=1, nn, my(m=f(k)); if (m>r, listput(list, k); r = m); ); Vec(list); \\ Michel Marcus, Sep 18 2022
CROSSREFS
Similar sequences: A093036, A340548, A355595.
Sequence in context: A307122 A309015 A355579 * A349424 A134865 A140753
KEYWORD
nonn,base,fini
AUTHOR
Bernard Schott, Sep 17 2022
EXTENSIONS
More terms from Amiram Eldar, Sep 17 2022
STATUS
approved